Given a m * n
matrix of ones and zeros, return how many square submatrices have all ones.
Example 1:
Input: matrix = [ [0,1,1,1], [1,1,1,1], [0,1,1,1] ] Output: 15 Explanation: There are 10 squares of side 1. There are 4 squares of side 2. There is 1 square of side 3. Total number of squares = 10 + 4 + 1 = 15.
Example 2:
Input: matrix = [ [1,0,1], [1,1,0], [1,1,0] ] Output: 7 Explanation: There are 6 squares of side 1. There is 1 square of side 2. Total number of squares = 6 + 1 = 7.
Constraints:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
Related Topics:
Array, Dynamic Programming
Let dp[i][j]
be the side length of the max square with all ones.
dp[i + 1][j + 1] = min( dp[i][j], dp[i + 1][j], dp[i][j + 1] ) + 1
dp[0][i] = dp[i][0] = 0
The answer is the sum of all dp[i + 1][j + 1]
.
// OJ: https://leetcode.com/problems/count-square-submatrices-with-all-ones/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
int countSquares(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size(), ans = 0;
vector<vector<int>> dp(M + 1, vector<int>(N + 1));
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
if (A[i][j] == 0) continue;
dp[i + 1][j + 1] = min({ dp[i][j], dp[i + 1][j], dp[i][j + 1] }) + 1;
ans += dp[i + 1][j + 1];
}
}
return ans;
}
};
// OJ: https://leetcode.com/problems/count-square-submatrices-with-all-ones/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
int countSquares(vector<vector<int>>& A) {
int M = A.size(), N = A[0].size(), ans = 0;
vector<int> dp(N + 1);
for (int i = 0; i < M; ++i) {
int prev = 0;
for (int j = 0; j < N; ++j) {
int cur = dp[j + 1];
if (A[i][j] == 0) dp[j + 1] = 0;
else dp[j + 1] = min({ prev, dp[j], dp[j + 1] }) + 1;
ans += dp[j + 1];
prev = cur;
}
}
return ans;
}
};