Given an array of positive integers arr
, calculate the sum of all possible odd-length subarrays.
A subarray is a contiguous subsequence of the array.
Return the sum of all odd-length subarrays of arr
.
Example 1:
Input: arr = [1,4,2,5,3] Output: 58 Explanation: The odd-length subarrays of arr and their sums are: [1] = 1 [4] = 4 [2] = 2 [5] = 5 [3] = 3 [1,4,2] = 7 [4,2,5] = 11 [2,5,3] = 10 [1,4,2,5,3] = 15 If we add all these together we get 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
Example 2:
Input: arr = [1,2] Output: 3 Explanation: There are only 2 subarrays of odd length, [1] and [2]. Their sum is 3.
Example 3:
Input: arr = [10,11,12] Output: 66
Constraints:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
Related Topics:
Array
// OJ: https://leetcode.com/problems/sum-of-all-odd-length-subarrays/
// Author: github.com/lzl124631x
// Time: O(N^3)
// Space: O(1)
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& A) {
int ans = 0;
for (int len = 1; len <= A.size(); len += 2) {
for (int i = 0; i <= A.size() - len; ++i) {
for (int j = 0; j < len; ++j) ans += A[i + j];
}
}
return ans;
}
};
// OJ: https://leetcode.com/problems/sum-of-all-odd-length-subarrays/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& A) {
vector<int> sum(A.size() + 1);
partial_sum(begin(A), end(A), begin(sum) + 1);
int ans = 0;
for (int len = 1; len <= A.size(); len += 2) {
for (int i = 0; i <= A.size() - len; ++i) ans += sum[i + len] - sum[i];
}
return ans;
}
};
Or
// OJ: https://leetcode.com/problems/sum-of-all-odd-length-subarrays/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(1)
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& A) {
int ans = 0;
for (int i = 0; i < A.size(); ++i) {
int sum = 0;
for (int j = i; j < A.size(); j += 2) {
sum += (j > i ? A[j - 1] : 0) + A[j];
ans += sum;
}
}
return ans;
}
};
How many subarrays that contain A[i]
?
For the left bound, we can pick from 0, 1, 2, ..., i
-th elements, i.e. i + 1
choices.
For the right bound, we can pick from i, i + 1, ..., N - 1
-th elements, i.e. N - i
choices.
So there are in total k = (i + 1) * (N - i)
subarrays containing A[i]
.
How many of them are of odd length?
Take [1, 2, 3]
for example,
Subarrays containing 1
: [1], [1,2], [1,2,3]
. 2 odd and 1 even.
Subarrays containing 2
: [2], [1,2], [2,3], [1,2,3]
. 2 odd and 2 even.
Subarrays containing 3
: [3], [2,3], [1,2,3]
. 2 odd and 1 even.
So the pattern is that the odd count is ceil(k / 2) = (k + 1) / 2
.
Thus A[i]
will be counted ((i + 1) * (N - i) + 1) / 2
times.
// OJ: https://leetcode.com/problems/sum-of-all-odd-length-subarrays/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
// Ref: https://leetcode.com/problems/sum-of-all-odd-length-subarrays/discuss/854184/JavaC%2B%2BPython-O(N)-Time-O(1)-Space
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& A) {
int ans = 0, N = A.size();
for (int i = 0; i < N; ++i) ans += ((i + 1) * (N - i) + 1) / 2 * A[i];
return ans;
}
};