The count-and-say sequence is a sequence of digit strings defined by the recursive formula:
countAndSay(1) = "1"
countAndSay(n)
is the way you would "say" the digit string fromcountAndSay(n-1)
, which is then converted into a different digit string.
To determine how you "say" a digit string, split it into the minimal number of groups so that each group is a contiguous section all of the same character. Then for each group, say the number of characters, then say the character. To convert the saying into a digit string, replace the counts with a number and concatenate every saying.
For example, the saying and conversion for digit string "3322251"
:
Given a positive integer n
, return the nth
term of the count-and-say sequence.
Example 1:
Input: n = 1 Output: "1" Explanation: This is the base case.
Example 2:
Input: n = 4 Output: "1211" Explanation: countAndSay(1) = "1" countAndSay(2) = say "1" = one 1 = "11" countAndSay(3) = say "11" = two 1's = "21" countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"
Constraints:
1 <= n <= 30
Companies:
Bloomberg, Microsoft, Facebook, Adobe, Goldman Sachs
Related Topics:
String
Similar Questions:
// OJ: https://leetcode.com/problems/count-and-say/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
string countAndSay(int n) {
if (n == 1) return "1";
string s = countAndSay(n - 1), ans;
for (int i = 0, N = s.size(); i < N; ++i) {
char d = s[i];
int cnt = 1;
while (i + 1 < N && s[i + 1] == s[i]) ++i, ++cnt;
ans += to_string(cnt) + d;
}
return ans;
}
};
// OJ: https://leetcode.com/problems/count-and-say/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
string countAndSay(int n) {
string ans = "1";
while (--n) {
string next;
int i = 0;
while (i < ans.size()) {
char c = ans[i];
int cnt = 0;
while (i < ans.size() && ans[i] == c) ++cnt, ++i;
next += to_string(cnt) + c;
}
ans = next;
}
return ans;
}
};