Skip to content

Latest commit

 

History

History

85

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Given a rows x cols binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

 

Example 1:

Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
Output: 6
Explanation: The maximal rectangle is shown in the above picture.

Example 2:

Input: matrix = [["0"]]
Output: 0

Example 3:

Input: matrix = [["1"]]
Output: 1

 

Constraints:

  • rows == matrix.length
  • cols == matrix[i].length
  • 1 <= row, cols <= 200
  • matrix[i][j] is '0' or '1'.

Companies:
Google, Amazon, Apple, Dunzo, Bloomberg

Related Topics:
Array, Dynamic Programming, Stack, Matrix, Monotonic Stack

Similar Questions:

Solution 1. Monotonic Stack

For each row:

  • Calculate an h array where h[j] is the height of 1s from A[i][j] upwards.
  • Calculate nextSmaller and prevSmaller using Monotonic Stack where nextSmaller/prevSmaller is the index of the next/previous smaller element in h array. (Refer to 496. Next Greater Element I (Easy))
  • The answer is the maximum of (nextSmaller - prevSmaller - 1) * h[j].
// OJ: https://leetcode.com/problems/maximal-rectangle/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int maximalRectangle(vector<vector<char>>& A) {
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<int> h(N), nextSmaller(N);
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                h[j] = A[i][j] == '0' ? 0 : (h[j] + 1);
            }
            stack<int> s;
            for (int j = N - 1; j >= 0; --j) {
                while (s.size() && h[j] <= h[s.top()]) s.pop();
                nextSmaller[j] = s.size() ? s.top() : N;
                s.push(j);
            }
            s = {};
            for (int j = 0; j < N; ++j) {
                while (s.size() && h[j] <= h[s.top()]) s.pop();
                int prevSmaller = s.size() ? s.top() : -1;
                ans = max(ans, (nextSmaller[j] - prevSmaller - 1) * h[j]);
                s.push(j);
            }
        }
        return ans;
    }
};

Solution 2. Monotonic Stack

We can reuse the solution for 84. Largest Rectangle in Histogram (Hard).

// OJ: https://leetcode.com/problems/maximal-rectangle/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int maximalRectangle(vector<vector<char>>& A) {
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<int> h(N + 1);
        for (int i = 0; i < M; ++i) {
            stack<int> s;
            for (int j = 0; j <= N; ++j) {
                h[j] = j < N && A[i][j] == '1' ? (h[j] + 1) : 0;
                while (s.size() && h[j] <= h[s.top()]) {
                    int height = h[s.top()];
                    s.pop();
                    int left = s.size() ? s.top() : -1;
                    ans = max(ans, (j - left - 1) * height);
                }
                s.push(j);
            }
        }
        return ans;
    }
};

Solution 3. DP

// OJ: https://leetcode.com/problems/maximal-rectangle/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int maximalRectangle(vector<vector<char>>& A) {
        int M = A.size(), N = A[0].size(), ans = 0;
        vector<int> h(N), prevSmaller(N, -1), nextSmaller(N, N);
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) h[j] = A[i][j] == '1' ? h[j] + 1 : 0;
            for (int j = N - 2; j >= 0; --j) {
                int k = j + 1;
                while (k < N && h[k] >= h[j]) k = nextSmaller[k];
                nextSmaller[j] = k;
            }
            for (int j = 1; j < N; ++j) {
                int k = j - 1;
                while (k >= 0 && h[k] >= h[j]) k = prevSmaller[k];
                prevSmaller[j] = k;
            }
            for (int j = 0; j < N; ++j) ans = max(ans, (nextSmaller[j] - prevSmaller[j] - 1) * h[j]);
        }
        return ans;
    }
};

Solution 4. DP

Let height[i][j] be the height of the bar from A[i][j] to A[0][j].

Let left[i][j] be the index of the leftmost column such that the bar at A[i][k] has height at least height[i][j] for all left[i][j] <= k <= j.

Let right[i][j] be the index of the rightmost column such that the bar at A[i][k] has height at least height[i][j] for all j <= k < right[i][j].

So the answer is the max (right[i][j] - left[i][j]) * height[i][j].

We can use the following equations to get the values.

height[i][j] = A[i][j] == '1' ? height[i - 1][j] + 1 : 0

left[i][j] = max(left[i - 1][j], curLeft)         // If A[i][j] == '1'
           = 0                                    // If A[i][j] == '0'
where curLeft is the index of the leftmost column such that A[i][k] are all ones for `curLeft <= k <= j`

right[i][j] = min(right[i - 1][j], curRight)      // If A[i][j] == '1'
            = N                                   // If A[i][j] == '0'
where curRight is the index of the rightmost column such that A[i][k] are all ones for all `j <= k < curRight`

Since height[i][j], left[i][j] and right[i][j] are only dependent on the value at the same column in the previous row, we can simply use 1D arrays to store those values.

// OJ: https://leetcode.com/problems/maximal-rectangle/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int maximalRectangle(vector<vector<char>>& A) {
        if (A.empty() || A[0].empty()) return 0;
        int ans = 0, M = A.size(), N = A[0].size();
        vector<int> left(N, 0), right(N, N), height(N, 0);
        for (int i = 0; i < M; ++i) {
            int curLeft = 0, curRight = N;
            for (int j = 0; j < N; ++j) height[j] = A[i][j] == '1' ? height[j] + 1 : 0;
            for (int j = 0; j < N; ++j) {
                if (A[i][j] == '1') left[j] = max(left[j], curLeft);
                else {
                    left[j] = 0;
                    curLeft = j + 1;
                }
            }
            for (int j = N - 1; j >= 0; --j) {
                if (A[i][j] == '1') right[j] = min(right[j], curRight);
                else {
                    right[j] = N;
                    curRight = j;
                }
            }
            for (int j = 0; j < N; ++j) ans = max(ans, (right[j] - left[j]) * height[j]);
        }
        return ans;
    }
};