-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate.py
93 lines (77 loc) · 2.42 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import random
import paddle
import numpy as np
from paddle3d.apis.config import Config
from paddle3d.apis.trainer import Trainer
from paddle3d.utils.logger import logger
def parse_args():
"""
"""
parser = argparse.ArgumentParser(description='Model evaluation')
# params of training
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=None)
parser.add_argument(
'--model',
dest='model',
help='pretrained parameters of the model',
type=str,
default=None)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
return parser.parse_args()
def main(args):
"""
"""
if args.cfg is None:
raise RuntimeError
if not os.path.exists(args.cfg):
raise RuntimeError
cfg = Config(path=args.cfg, batch_size=args.batch_size)
if cfg.val_dataset is None:
raise RuntimeError(
'The validation dataset is not specified in the configuration file.'
)
elif len(cfg.val_dataset) == 0:
raise ValueError(
'The length of validation dataset is 0. Please check if your dataset is valid'
)
dic = cfg.to_dict()
batch_size = dic.pop('batch_size')
dic.update({
'dataloader_fn': {
'batch_size': batch_size,
'num_workers': args.num_workers
}
})
trainer = Trainer(**dic)
trainer.model.set_state_dict(paddle.load(args.model))
trainer.evaluate()
if __name__ == '__main__':
args = parse_args()
main(args)