forked from exitudio/BAMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_vq.py
124 lines (99 loc) · 4.62 KB
/
train_vq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from os.path import join as pjoin
import torch
from torch.utils.data import DataLoader
from models.vq.model import RVQVAE
from models.vq.vq_trainer import RVQTokenizerTrainer
from options.vq_option import arg_parse
from data.t2m_dataset import MotionDataset
from utils import paramUtil
import numpy as np
from models.t2m_eval_wrapper import EvaluatorModelWrapper
from utils.get_opt import get_opt
from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion
import datetime
os.environ["OMP_NUM_THREADS"] = "1"
def plot_t2m(data, save_dir):
data = train_dataset.inv_transform(data)
for i in range(len(data)):
joint_data = data[i]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), opt.joints_num).numpy()
save_path = pjoin(save_dir, '%02d.mp4' % (i))
# plot_3d_motion(save_path, kinematic_chain, joint, title="None", fps=fps, radius=radius)
if __name__ == "__main__":
# torch.autograd.set_detect_anomaly(True)
opt = arg_parse(True)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
print(f"Using Device: {opt.device}")
opt.model_dir = pjoin(opt.save_root, 'model')
opt.meta_dir = pjoin(opt.save_root, 'meta')
opt.eval_dir = pjoin(opt.save_root, 'animation')
from exit.utils import init_save_folder
init_save_folder(opt.save_root)
os.makedirs(opt.model_dir, exist_ok=True)
os.makedirs(opt.meta_dir, exist_ok=True)
os.makedirs(opt.eval_dir, exist_ok=True)
os.makedirs(opt.log_dir, exist_ok=True)
if opt.dataset_name == "t2m":
opt.data_root = './dataset/HumanML3D/'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 22
dim_pose = 263
fps = 20
radius = 4
kinematic_chain = paramUtil.t2m_kinematic_chain
dataset_opt_path = './checkpoints/t2m/Comp_v6_KLD005/opt.txt'
elif opt.dataset_name == "kit":
opt.data_root = './dataset/KIT-ML/'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 21
radius = 240 * 8
fps = 12.5
dim_pose = 251
opt.max_motion_length = 196
kinematic_chain = paramUtil.kit_kinematic_chain
dataset_opt_path = './checkpoints/kit/Comp_v6_KLD005/opt.txt'
else:
raise KeyError('Dataset Does not Exists')
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
mean = np.load(pjoin(opt.data_root, 'Mean.npy'))
std = np.load(pjoin(opt.data_root, 'Std.npy'))
train_split_file = pjoin(opt.data_root, 'train.txt')
val_split_file = pjoin(opt.data_root, 'val.txt')
net = RVQVAE(opt,
dim_pose,
opt.nb_code,
opt.code_dim,
opt.code_dim,
opt.down_t,
opt.stride_t,
opt.width,
opt.depth,
opt.dilation_growth_rate,
opt.vq_act,
opt.vq_norm)
pc_vq = sum(param.numel() for param in net.parameters())
print(net)
# print("Total parameters of discriminator net: {}".format(pc_vq))
# all_params += pc_vq_dis
print('Total parameters of all models: {}M'.format(pc_vq/1000_000))
trainer = RVQTokenizerTrainer(opt, vq_model=net)
train_dataset = MotionDataset(opt, mean, std, train_split_file)
val_dataset = MotionDataset(opt, mean, std, val_split_file)
train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
shuffle=True, pin_memory=True)
net.moment = {'mean': torch.from_numpy(train_loader.dataset.mean).cuda().float(),
'std': torch.from_numpy(train_loader.dataset.std).cuda().float()}
val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
shuffle=True, pin_memory=True)
eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=opt.device)
trainer.train(train_loader, val_loader, eval_val_loader, eval_wrapper, plot_t2m)
## train_vq.py --dataset_name kit --batch_size 512 --name VQVAE_dp2 --gpu_id 3
## train_vq.py --dataset_name kit --batch_size 256 --name VQVAE_dp2_b256 --gpu_id 2
## train_vq.py --dataset_name kit --batch_size 1024 --name VQVAE_dp2_b1024 --gpu_id 1
## python train_vq.py --dataset_name kit --batch_size 256 --name VQVAE_dp1_b256 --gpu_id 2