-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
148 lines (122 loc) · 5.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import time
import uuid
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
from model.vgg16_fcn8 import Vgg16FCN8
from model.brain_image_dataset import BrainImageDataset
from model.metrics import IOU
from parse_config import create_parser
from utils import save_checkpoint, load_checkpoint, progress_bar, experiment_record
# step 0: fix random seed for reproducibility
torch.manual_seed(1)
torch.cuda.manual_seed(1)
if __name__ == '__main__':
# init constants:
parser = create_parser()
configs = parser.parse_args()
uid = str(uuid.uuid1())
best_epoch = 0
pre_val_miou = 0.0
# step 1: prepare dataset
dset = BrainImageDataset('archive/kaggle_3m')
train_dataset, val_dataset, test_dataset = random_split(dset, [3005, 393, 531])
train_dataloader = DataLoader(train_dataset, batch_size=configs.batch_size,
shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=configs.batch_size,
shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=configs.batch_size,
shuffle=False)
total_steps = len(train_dataloader)
# step 2: init network
net = Vgg16FCN8()
# step 3: define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=configs.lr)
# step 4: check if resume training
start_epoch = 0
if configs.resume:
ckpt = load_checkpoint(configs.ckpt)
net.load_state_dict(ckpt['net'])
start_epoch = ckpt['epoch'] + 1
optimizer.load_state_dict(ckpt['optim'])
uid = ckpt['uid']
pre_val_miou = ckpt['miou']
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
print("Checkpoint restored, start from epoch {}.".format(start_epoch + 1))
# step 5: move Net to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
net.to(device)
# step 6: main loop
loss_history = []
val_history = []
for epoch in range(start_epoch, start_epoch + configs.epochs):
net.train()
running_loss = 0.0
for i, data in enumerate(train_dataloader):
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
prefix = 'Epoch [{}/{}]-'.format(epoch + 1, start_epoch + configs.epochs)
if (i + 1) % 10 == 0: # print every 10 mini-batches
suffix = 'Train Loss: {:.4f}'.format(running_loss / (i + 1))
progress_bar(i + 1, total_steps, prefix, suffix)
if configs.test_run:
break
loss_history.append(running_loss/len(train_dataloader))
# print Valid mIoU per epoch
net.eval()
with torch.no_grad():
val_metrics = IOU()
for val_data in val_dataloader:
images, labels = val_data[0].to(device), val_data[1]
outputs = net(images)
predicted = torch.argmax(outputs, dim=1).cpu().numpy()
val_metrics.batch_iou(predicted, labels.cpu().numpy())
print('\nValid mIoU: {:.4f}'
.format(val_metrics.miou()))
val_history.append(val_metrics.miou())
miou = val_metrics.miou()
if pre_val_miou < miou:
checkpoint = {
'net': net.state_dict(),
'epoch': epoch,
'optim': optimizer.state_dict(),
'uid': uid,
'miou': miou,
'loss_his': loss_history,
'val_iou_his': val_history
}
save_checkpoint(checkpoint,
os.path.join(configs.ckpt_path, "Vgg16FCN8-{}.pt".format(uid[:8])))
# pre_val_miou = val_metrics.mean_iou
pre_val_miou = miou
best_epoch = epoch + 1
if (epoch + 1) % 5 == 0:
checkpoint = {
'net': net.state_dict(),
'epoch': epoch,
'optim': optimizer.state_dict(),
'uid': uid,
'miou': miou,
'loss_his': loss_history,
'val_iou_his': val_history
}
save_checkpoint(checkpoint,
os.path.join(configs.ckpt_path, "Vgg16FCN8-{}-epoch{}.pt".format(uid[:8],epoch+1)))
# step 7: logging experiment
print(loss_history)
print(val_history)
experiment_record(uid, time.ctime(), configs.batch_size, configs.lr, best_epoch, pre_val_miou)