-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcifar.py
207 lines (167 loc) · 7.15 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import argparse
import os.path as osp
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
from resnet import ResNet18
from utils import *
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--bs', default=512, type=int, help='batch size')
parser.add_argument('--es', default=100, type=int, help='epoch size')
parser.add_argument('--stepsize', type=int, default=30)
parser.add_argument('--gamma', type=float, default=0.1, help="learning rate decay")
parser.add_argument('--number', type=int, default=1000, help="Random select N exmaples for plotting")
parser.add_argument('--save-dir', type=str, default='images')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
def main():
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.bs, shuffle=True, num_workers=4)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.bs, shuffle=False, num_workers=4)
# Model
print('==> Building model..')
net = ResNet18(num_classes=10)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
# select N samples for plotting
perm_train = torch.randperm(trainset.__len__())
select_train = perm_train[:args.number]
perm_test = torch.randperm(testset.__len__())
select_test = perm_test[:args.number]
for epoch in range(0, args.es):
print('\nEpoch: %d Learning rate: %f' % (epoch, optimizer.param_groups[0]['lr']))
train_features,train_labels = train( optimizer, net, trainloader, criterion)
fea, label = embedding(train_features, train_labels, select_train)
plot_features(fea, label, 10, epoch, 'train/')
# embedding(train_features, train_labels, select_train)
test_features, test_labels = test(net,testloader,criterion)
fea, label = embedding(test_features, test_labels, select_test)
plot_features(fea, label, 10, epoch, 'test/')
scheduler.step()
# Training
def train( optimizer, net, trainloader, criterion):
net.train()
train_loss = 0
correct = 0
total = 0
train_features = []
train_labels = []
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
features, outputs = net(inputs)
train_features.append(features)
train_labels.append(targets)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
return train_features,train_labels
def test(net,testloader,criterion):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
test_features = []
test_labels = []
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
features, outputs = net(inputs)
test_features.append(features)
test_labels.append(targets)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
return test_features, test_labels
def embedding(featureList, labelList, select_indx):
assert len(featureList) == len(labelList)
assert len(featureList) > 0
feature = featureList[0]
label = labelList[0]
for i in range(1, len(labelList)):
feature = torch.cat([feature,featureList[i]],dim=0)
label = torch.cat([label, labelList[i]], dim=0)
feature = feature[select_indx,:]
label = label[select_indx]
feature =feature.cpu().detach().numpy()
label = label.cpu().detach().numpy()
# Using PCA to reduce dimension to a reasonable dimension as recommended in
# https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
feature = PCA(n_components=50).fit_transform(feature)
feature_embedded = TSNE(n_components=2).fit_transform(feature)
return feature_embedded, label
# print(f"feature shape: {feature.shape}")
# print(f"feature_embedded shape: {feature_embedded.shape}")
# print(f"label shape: {label.shape}")
# uni_label = np.unique(label)
# dict={}
# for temp in uni_label:
# idx = (label == temp).nonzero()
# fea = feature_embedded[idx,:]
# dict[temp] = fea
def plot_features(features, labels, num_classes, epoch, prefix):
"""Plot features on 2D plane.
Args:
features: (num_instances, num_features).
labels: (num_instances).
"""
colors = ['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9']
for label_idx in range(num_classes):
plt.scatter(
features[labels == label_idx, 0],
features[labels == label_idx, 1],
c=colors[label_idx],
s=1,
)
plt.legend(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], loc='upper right')
dirname = osp.join(args.save_dir, prefix)
if not osp.exists(dirname):
os.mkdir(dirname)
save_name = osp.join(dirname, 'epoch_' + str(epoch + 1) + '.png')
plt.savefig(save_name, bbox_inches='tight')
plt.close()
if __name__ == '__main__':
main()