-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
265 lines (215 loc) · 10.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#include <iostream>
#include <vector>
#include "classifiers/header/Adaline.h"
#include "classifiers/header/Perceptron.h"
#include "datasets/header/Data.h"
#include "datasets/header/DataSetAccessor.h"
#include "files/header/DataSetReader.h"
#include "files/header/ParametersReader.h"
#include "functions/header/BipolarStepFunction.h"
#include "functions/header/UnipolarStepFunction.h"
#include "neurons/header/Neuron.h"
void processBipolarAnd(const IDataSetReader*, const IParametersReader*, double alpha, int epochs, double zeroDeviation, double bias, double minMSE);
void processUnipolarAnd(const IDataSetReader*, const IParametersReader*, double alpha, int epochs, double zeroDeviation, double bias, double minMSE);
void processBipolarOr(const IDataSetReader*, const IParametersReader*, double alpha, int epochs, double zeroDeviation, double bias, double minMSE);
void processUnipolarOr(const IDataSetReader*, const IParametersReader*, double alpha, int epochs, double zeroDeviation, double bias, double minMSE);
const IParametersReader* readParameters(const std::string& fileName);
const IDataSet* readDataSet(const IDataSetReader*, const IParametersReader*, const std::string& fileName);
const IDataSet* enlargeDataSet(const IDataSet*, const IParametersReader*);
const double* createDataWithDeviation(const double* srcData, const size_t dataSize, double deviation);
IDataSetAccessor* prepareDataSetWithAccessor(const IDataSet*, const IParametersReader*);
void predict(IClassifier* classifier, double value1, double value2, int label);
void processClassifier(IClassifier* classifier, double zeroDeviation, int epochs);
void calculateScores(IClassifier* classifier);
int main()
{
const IParametersReader* parametersReader = readParameters("../../parameters.txt");
const IDataSetReader* dataSetReader = new DataSetReader();
double alpha = parametersReader->getParameter("alpha");
int epochs = (int) parametersReader->getParameter("epochs");
double zeroDeviation = parametersReader->getParameter("randomWeightsZeroDeviation");
double bias = parametersReader->getParameter("bias");
double minMSE = parametersReader->getParameter("minMSE");
processUnipolarAnd(dataSetReader, parametersReader, alpha, epochs, zeroDeviation, bias, minMSE);
processBipolarAnd(dataSetReader, parametersReader, alpha, epochs, zeroDeviation, bias, minMSE);
processUnipolarOr(dataSetReader, parametersReader, alpha, epochs, zeroDeviation, bias, minMSE);
processBipolarOr(dataSetReader, parametersReader, alpha, epochs, zeroDeviation, bias, minMSE);
delete dataSetReader;
delete parametersReader;
return 0;
}
IDataSetAccessor* prepareDataSetWithAccessor(const IDataSet* dataSet, const IParametersReader* parametersReader)
{
IDataSetAccessor* dataSetAccessor = new DataSetAccessor(dataSet);
double trainingSetPart = parametersReader->getParameter("trainingSetPart");
double validatingSetPart = parametersReader->getParameter("validatingSetPart");
double testingSetPart = parametersReader->getParameter("testingSetPart");
dataSetAccessor->splitDataSet(trainingSetPart, validatingSetPart, testingSetPart);
return dataSetAccessor;
}
const IDataSet* enlargeDataSet(const IDataSet* dataSet, const IParametersReader* parametersReader)
{
int enlargeTimes = (int) parametersReader->getParameter("enlargeDataSetTimes");
double deviation = parametersReader->getParameter("enlargedDataSetMaxDeviation");
const size_t dataSize = dataSet->getDataSize();
const size_t dataSetSize = dataSet->getDataSetSize();
auto* _dataSet = new std::vector<const IData*>();
for (int index = 0; index < dataSetSize; ++index)
{
const IData* data = dataSet->getData(index);
const int* label = data->getLabel();
const double* _data = data->getData();
for (int time = 0; time < enlargeTimes; ++time)
{
const double* newData = createDataWithDeviation(_data, dataSize, deviation);
_dataSet->push_back(new Data(newData, new int(*label), dataSize));
}
}
return new DataSet(_dataSet, dataSize, dataSetSize * enlargeTimes);
}
const double* createDataWithDeviation(const double* srcData, const size_t dataSize, double deviation)
{
auto* destData = new double[dataSize];
for (int i = 0; i < dataSize; ++i)
{
double random = ((double) rand() / (double) RAND_MAX);
destData[i] = srcData[i] + (2 * deviation * random - deviation);
}
return destData;
}
const IParametersReader* readParameters(const std::string& fileName)
{
IParametersReader* parametersReader = new ParametersReader();
std::cout << "Reading parameters from " << fileName << "...\n\n";
parametersReader->read(fileName);
std::cout << "Parameters:\n";
parametersReader->printParameters();
return parametersReader;
}
const IDataSet* readDataSet(
const IDataSetReader* dataSetReader,
const IParametersReader* parametersReader,
const std::string& fileName)
{
size_t dataSize = (size_t) parametersReader->getParameter("dataSize");
std::cout << "\nReading dataset from " << fileName << "...\n\n";
return dataSetReader->readDataSet(fileName, dataSize);
}
void processUnipolarAnd(
const IDataSetReader* dataSetReader,
const IParametersReader* parametersReader,
double alpha,
int epochs,
double zeroDeviation,
double bias,
double minMSE)
{
std::cout << "\nLearning classifiers for AND with Unipolar step function\n";
const IDataSet* dataSet = readDataSet(dataSetReader, parametersReader, "../../dataset_and_unipolar.txt");
const IDataSet* enlargedDataSet = enlargeDataSet(dataSet, parametersReader);
IDataSetAccessor* dataSetAccessor = prepareDataSetWithAccessor(enlargedDataSet, parametersReader);
std::cout << "Perceptron..." << std::endl;
IClassifier* perceptron = new Perceptron(alpha, new double(bias), dataSetAccessor, new Neuron(), new UnipolarStepFunction());
processClassifier(perceptron, zeroDeviation, epochs);
delete perceptron;
std::cout << "Adaline..." << std::endl;
IClassifier* adaline = new Adaline(alpha, new double(bias), minMSE, dataSetAccessor, new Neuron(), new UnipolarStepFunction());
processClassifier(adaline, zeroDeviation, epochs);
delete adaline;
delete dataSetAccessor;
delete dataSet;
delete enlargedDataSet;
}
void processBipolarAnd(
const IDataSetReader* dataSetReader,
const IParametersReader* parametersReader,
double alpha,
int epochs,
double zeroDeviation,
double bias,
double minMSE)
{
std::cout << "\nLearning classifiers for AND with Bipolar step function\n";
const IDataSet* dataSet = readDataSet(dataSetReader, parametersReader, "../../dataset_and_bipolar.txt");
const IDataSet* enlargedDataSet = enlargeDataSet(dataSet, parametersReader);
IDataSetAccessor* dataSetAccessor = prepareDataSetWithAccessor(enlargedDataSet, parametersReader);
std::cout << "Perceptron...\n";
IClassifier* perceptron = new Perceptron(alpha, new double(bias), dataSetAccessor, new Neuron(), new BipolarStepFunction());
processClassifier(perceptron, zeroDeviation, epochs);
delete perceptron;
std::cout << "Adaline...\n";
IClassifier* adaline = new Adaline(alpha, new double(bias), minMSE, dataSetAccessor, new Neuron(), new BipolarStepFunction());
processClassifier(adaline, zeroDeviation, epochs);
delete adaline;
delete dataSetAccessor;
delete dataSet;
delete enlargedDataSet;
}
void processUnipolarOr(
const IDataSetReader* dataSetReader,
const IParametersReader* parametersReader,
double alpha,
int epochs,
double zeroDeviation,
double bias,
double minMSE)
{
std::cout << "\nLearning classifiers for OR with Unipolar step function\n";
const IDataSet* dataSet = readDataSet(dataSetReader, parametersReader, "../../dataset_or_unipolar.txt");
const IDataSet* enlargedDataSet = enlargeDataSet(dataSet, parametersReader);
IDataSetAccessor* dataSetAccessor = prepareDataSetWithAccessor(enlargedDataSet, parametersReader);
std::cout << "Perceptron..." << std::endl;
IClassifier* perceptron = new Perceptron(alpha, new double(bias), dataSetAccessor, new Neuron(), new UnipolarStepFunction());
processClassifier(perceptron, zeroDeviation, epochs);
delete perceptron;
std::cout << "Adaline..." << std::endl;
IClassifier* adaline = new Adaline(alpha, new double(bias), minMSE, dataSetAccessor, new Neuron(), new UnipolarStepFunction());
processClassifier(adaline, zeroDeviation, epochs);
delete adaline;
delete dataSetAccessor;
delete dataSet;
delete enlargedDataSet;
}
void processBipolarOr(
const IDataSetReader* dataSetReader,
const IParametersReader* parametersReader,
double alpha,
int epochs,
double zeroDeviation,
double bias,
double minMSE)
{
std::cout << "\nLearning classifiers for OR with Bipolar step function\n";
const IDataSet* dataSet = readDataSet(dataSetReader, parametersReader, "../../dataset_or_bipolar.txt");
const IDataSet* enlargedDataSet = enlargeDataSet(dataSet, parametersReader);
IDataSetAccessor* dataSetAccessor = prepareDataSetWithAccessor(enlargedDataSet, parametersReader);
std::cout << "Perceptron...\n";
IClassifier* perceptron = new Perceptron(alpha, new double(bias), dataSetAccessor, new Neuron(), new BipolarStepFunction());
processClassifier(perceptron, zeroDeviation, epochs);
delete perceptron;
std::cout << "Adaline...\n";
IClassifier* adaline = new Adaline(alpha, new double(bias), minMSE, dataSetAccessor, new Neuron(), new BipolarStepFunction());
processClassifier(adaline, zeroDeviation, epochs);
delete adaline;
delete dataSetAccessor;
delete dataSet;
delete enlargedDataSet;
}
void predict(IClassifier* classifier, double value1, double value2, int label)
{
const IData* input = new Data(new double[2] {value1, value2}, new int(label), 2);
std::cout << "(" << value1 << ", " << value2 << ") = " << classifier->predict(input) << std::endl;
delete input;
}
void processClassifier(IClassifier* classifier, double zeroDeviation, int epochs)
{
classifier->initRandomWeights(zeroDeviation);
classifier->learn(epochs);
calculateScores(classifier);
}
void calculateScores(IClassifier* classifier)
{
const IScore* score = classifier->validate();
std::cout << "Classifier accuracy: " << score->getAccuracy() << "%" << std::endl;
delete score;
}