-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.go
191 lines (144 loc) · 6.54 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Main package provide main to test library
package main
import (
// sys import
"os"
// third part import
log "github.com/sirupsen/logrus"
// this repo internal import
mn "github.com/made2591/go-perceptron-go/model/neural"
mu "github.com/made2591/go-perceptron-go/util"
v "github.com/made2591/go-perceptron-go/validation"
)
func init() {
// Output to stdout instead of the default stderr
log.SetOutput(os.Stdout)
// Only log the warning severity or above.
log.SetLevel(log.InfoLevel)
}
//############################ MAIN ############################
func main() {
// #############################################################################################################
// ###################################### Single layer perceptron model ######################################
// #############################################################################################################
if true {
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"msg": "single layer perceptron train and test over sonar dataset",
}).Info("Compute single layer perceptron on sonar data set (binary classification problem)")
// percentage and shuffling in dataset
var filePath string = "./res/sonar.all_data.csv"
var percentage float64 = 0.67
var shuffle = 1
// single layer neuron parameters
var bias float64 = 0.0
var learningRate float64 = 0.01
// training parameters
var epochs int = 500
var folds int = 5
// Patterns initialization
var patterns, _, _ = mn.LoadPatternsFromCSVFile(filePath)
// NeuronUnit initialization
var neuron mn.NeuronUnit = mn.NeuronUnit{Weights: make([]float64, len(patterns[0].Features)), Bias: bias, Lrate: learningRate}
// compute scores for each folds execution
var scores []float64 = v.KFoldValidation(&neuron, patterns, epochs, folds, shuffle)
// use simpler validation
var neuron2 mn.NeuronUnit = mn.NeuronUnit{Weights: make([]float64, len(patterns[0].Features)), Bias: bias, Lrate: learningRate}
var scores2 []float64 = v.RandomSubsamplingValidation(&neuron2, patterns, percentage, epochs, folds, shuffle)
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"scores": scores,
}).Info("Scores reached: ", scores)
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"scores": scores2,
}).Info("Scores reached: ", scores2)
}
// #############################################################################################################
// ###################################### Multilayer perceptron model ########################################
// #############################################################################################################
if false {
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"msg": "multi layer perceptron train and test over iris dataset",
}).Info("Compute backpropagation multi layer perceptron on sonar data set (binary classification problem)")
// percentage and shuffling in dataset
var filePath = "./res/iris.all_data.csv"
//filePath = "./res/sonar.all_data.csv"
// single layer neuron parameters
var learningRate = 0.01
var percentage = 0.67
var shuffle = 1
// training parameters
var epochs = 500
var folds = 3
// Patterns initialization
var patterns, _ , mapped = mn.LoadPatternsFromCSVFile(filePath)
//input layer : 4 neuron, represents the feature of Iris, more in general dimensions of pattern
//hidden layer : 3 neuron, activation using sigmoid, number of neuron in hidden level
// 2° hidden l : * neuron, insert number of level you want
//output layer : 3 neuron, represents the class of Iris, more in general dimensions of mapped values
var layers []int = []int{len(patterns[0].Features), 20, len(mapped)}
//Multilayer perceptron model, with one hidden layer.
var mlp mn.MultiLayerNetwork = mn.PrepareMLPNet(layers, learningRate, mn.SigmoidalTransfer, mn.SigmoidalTransferDerivate)
// compute scores for each folds execution
var scores = v.MLPKFoldValidation(&mlp, patterns, epochs, folds, shuffle, mapped)
// use simpler validation
var mlp2 mn.MultiLayerNetwork = mn.PrepareMLPNet(layers, learningRate, mn.SigmoidalTransfer, mn.SigmoidalTransferDerivate)
var scores2 = v.MLPRandomSubsamplingValidation(&mlp2, patterns, percentage, epochs, folds, shuffle, mapped)
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"scores": scores,
}).Info("Scores reached: ", scores)
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"scores": scores2,
}).Info("Scores reached: ", scores2)
}
// #############################################################################################################
// ######################################### Recurrent Neural Network ########################################
// #############################################################################################################
if true {
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"msg": "multi layer perceptron train and test over iris dataset",
}).Info("Compute training algorithm on elman network using iris data set (binary classification problem)")
// percentage and shuffling in dataset
//var filePath = ".\\res\\iris.all_data.csv"
//var filePath = "./res/sonar.all_data.csv"
// single layer neuron parameters
var learningRate = 0.01
var shuffle = 1
// training parameters
var epochs = 500
// Patterns initialization
var patterns = mn.CreateRandomPatternArray(8, 30)
//log.Info(patterns[0].Features[:int(len(patterns[0].Features)/2)])
//n := mu.ConvertBinToInt(patterns[0].Features[:int(len(patterns[0].Features)/2)])
//log.Info(n)
//os.Exit(1)
//input layer : 4 neuron, represents the feature of Iris, more in general dimensions of pattern
//hidden layer : 3 neuron, activation using sigmoid, number of neuron in hidden level
// 2° hidden l : * neuron, insert number of level you want
//output layer : 3 neuron, represents the class of Iris, more in general dimensions of mapped values
//Multilayer perceptron model, with one hidden layer.
var mlp mn.MultiLayerNetwork =
mn.PrepareElmanNet(len(patterns[0].Features)+10,
10, len(patterns[0].MultipleExpectation), learningRate,
mn.SigmoidalTransfer, mn.SigmoidalTransferDerivate)
// compute scores for each folds execution
var mean, _ = v.RNNValidation(&mlp, patterns, epochs, shuffle)
log.WithFields(log.Fields{
"level": "info",
"place": "main",
"precision": mu.Round(mean, .5, 2),
}).Info("Scores reached: ", mu.Round(mean, .5, 2))
}
}