-
Notifications
You must be signed in to change notification settings - Fork 4
/
magic_quill.py
230 lines (186 loc) · 11 KB
/
magic_quill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import hashlib
import os
import json
from server import PromptServer
from PIL import Image, ImageOps
import torch
import numpy as np
import folder_paths
from aiohttp import web
import io
import base64
import comfy.samplers
from .scribble_color_edit import ScribbleColorEditModel
from .llava_new import LLaVAModel
def tensor_to_base64(tensor):
tensor = tensor.squeeze(0) * 255.
pil_image = Image.fromarray(tensor.cpu().byte().numpy())
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def load_and_preprocess_image(image_path, convert_to='RGB', has_alpha=False):
"""Load and preprocess an image from a given path."""
image = Image.open(image_path)
image = ImageOps.exif_transpose(image)
image = image.convert(convert_to)
image_array = np.array(image).astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image_array)[None,]
return image_tensor
def read_base64_image(base64_image):
if base64_image.startswith("data:image/png;base64,"):
base64_image = base64_image.split(",")[1]
elif base64_image.startswith("data:image/jpeg;base64,"):
base64_image = base64_image.split(",")[1]
elif base64_image.startswith("data:image/webp;base64,"):
base64_image = base64_image.split(",")[1]
else:
raise ValueError("Unsupported image format.")
image_data = base64.b64decode(base64_image)
image = Image.open(io.BytesIO(image_data))
image = ImageOps.exif_transpose(image)
return image
def load_and_resize_image(base64_image, convert_to='RGB', max_size=512):
"""Load and preprocess a base64 image, resize if necessary."""
image = read_base64_image(base64_image)
image = image.convert(convert_to)
width, height = image.size
if min(width, height) > max_size:
scaling_factor = max_size / min(width, height)
new_size = (int(width * scaling_factor), int(height * scaling_factor))
image = image.resize(new_size, Image.LANCZOS)
image_array = np.array(image).astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image_array)[None,]
return image_tensor
def create_alpha_mask(image_path):
"""Create an alpha mask from the alpha channel of an image."""
image = Image.open(image_path)
image = ImageOps.exif_transpose(image)
mask = torch.zeros((1, image.height, image.width), dtype=torch.float32, device="cpu")
if 'A' in image.getbands():
alpha_channel = np.array(image.getchannel('A')).astype(np.float32) / 255.0
mask[0] = 1.0 - torch.from_numpy(alpha_channel)
return mask
@PromptServer.instance.routes.post("/magic_quill/process_background_img")
async def process_background_img(request):
img = await request.json()
resized_img_tensor = load_and_resize_image(img)
resized_img_base64 = "data:image/png;base64," + tensor_to_base64(resized_img_tensor)
# add more processing here
return web.json_response(resized_img_base64)
@PromptServer.instance.routes.post("/magic_quill/guess_prompt")
async def guess_prompt_handler(request):
json_data = await request.json()
add_color_image = json_data.get("add_color_image", None)
original_image = json_data.get("original_image", None)
add_edge_image = json_data.get("add_edge_image", None)
original_image_path = folder_paths.get_annotated_filepath(original_image)
original_image_tensor = load_and_preprocess_image(original_image_path)
if add_color_image:
add_color_image_path = folder_paths.get_annotated_filepath(add_color_image)
add_color_image_tensor = load_and_preprocess_image(add_color_image_path)
else:
add_color_image_tensor = original_image_tensor
width, height = original_image_tensor.shape[1], original_image_tensor.shape[2]
add_edge_mask = create_alpha_mask(folder_paths.get_annotated_filepath(add_edge_image)) if add_edge_image else torch.zeros((1, height, width), dtype=torch.float32, device="cpu")
res = MagicQuill.guess_prompt(original_image_tensor, add_color_image_tensor, add_edge_mask)
return web.json_response({"prompt": res, "error": False})
class MagicQuill(object):
scribbleColorEditModel = ScribbleColorEditModel()
llavaModel = LLaVAModel()
@classmethod
def INPUT_TYPES(self):
self.canvas_set = False
work_dir = folder_paths.get_input_directory()
imgs = [
img
for img in os.listdir(work_dir)
if os.path.isfile(os.path.join(work_dir, img))
]
imgs.append(None)
return {
"required": {
"image": (imgs,),
"original_image": (imgs,),
"add_color_image": (imgs,),
"add_edge_image": (imgs,),
"remove_edge_image": (imgs,),
"model": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
"base_model_version": (['SD1.5'], {"default": "SD1.5"}),
"positive_prompt": ("STRING", {"default": ""}),
"negative_prompt": ("STRING", {"default": ""}),
"dtype": (['float16', 'bfloat16', 'float32', 'float64'], {"default": "float16"}),
"stroke_as_edge": (['enable', 'disable'], {"default": "enable"}),
"fine_edge": (['enable', 'disable'], {"default": "disable"}),
"grow_size": ("INT", {"default": 15, "min": 0, "max": 100, "step": 1, "display": "slider"}),
"edge_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 5.0, "step": 0.01, "display": "slider"}),
"color_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 5.0, "step": 0.01, "display": "slider"}),
# "palette_resolution": ("INT", {"default": 2048, "min": 128, "max": 2048, "step": 16, "display": "slider"}),
"inpaint_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01, "display": "slider"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 50, "display": "slider"}),
"cfg": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "display": "slider"}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"default": "euler_ancestral"}),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"default": "exponential"}),
},
}
RETURN_TYPES = ("LATENT", "IMAGE", "IMAGE", "IMAGE")
RETURN_NAMES = ("latent", "image", "edge map", "color palette")
FUNCTION = "painter_execute"
CATEGORY = "image"
@classmethod
def prepare_images_and_masks(cls, image, original_image, add_color_image, add_edge_image, remove_edge_image):
image_path = folder_paths.get_annotated_filepath(image)
image_tensor = load_and_preprocess_image(image_path)
width, height = image_tensor.shape[1], image_tensor.shape[2]
total_mask = create_alpha_mask(image_path)
original_image_path = folder_paths.get_annotated_filepath(original_image)
original_image_tensor = load_and_preprocess_image(original_image_path)
if add_color_image:
add_color_image_path = folder_paths.get_annotated_filepath(add_color_image)
add_color_image_tensor = load_and_preprocess_image(add_color_image_path)
else:
add_color_image_tensor = original_image_tensor
add_edge_mask = create_alpha_mask(folder_paths.get_annotated_filepath(add_edge_image)) if add_edge_image else torch.zeros_like(total_mask)
remove_edge_mask = create_alpha_mask(folder_paths.get_annotated_filepath(remove_edge_image)) if remove_edge_image else torch.zeros_like(total_mask)
return add_color_image_tensor, original_image_tensor, total_mask, add_edge_mask, remove_edge_mask
@classmethod
def guess_prompt(cls, original_image_tensor, add_color_image_tensor, add_edge_mask):
description, ans1, ans2 = cls.llavaModel.process(original_image_tensor, add_color_image_tensor, add_edge_mask)
ans_list = []
if ans1 and ans1 != "":
ans_list.append(ans1)
if ans2 and ans2 != "":
ans_list.append(ans2)
return ", ".join(ans_list)
@classmethod
def painter_execute(cls, image, original_image, add_color_image, add_edge_image, remove_edge_image, model, vae, clip, base_model_version, positive_prompt, negative_prompt, dtype, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler):
print(image, original_image, add_color_image, add_edge_image, remove_edge_image, model, vae, clip, base_model_version, positive_prompt, negative_prompt, dtype, grow_size, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler)
add_color_image, original_image, total_mask, add_edge_mask, remove_edge_mask = cls.prepare_images_and_masks(image, original_image, add_color_image, add_edge_image, remove_edge_image)
if torch.sum(remove_edge_mask).item() > 0 and torch.sum(add_edge_mask).item() == 0:
if positive_prompt == "":
positive_prompt = "empty scene"
edge_strength /= 3.
if not positive_prompt or positive_prompt == "":
positive_prompt = cls.guess_prompt(original_image, add_color_image, add_edge_mask)
print("positive prompt: ", positive_prompt)
latent_samples, final_image, lineart_output, color_output = cls.scribbleColorEditModel.process(model, vae, clip, original_image, add_color_image, base_model_version, positive_prompt, negative_prompt, dtype, total_mask, add_edge_mask, remove_edge_mask, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler)
final_image_base64 = tensor_to_base64(final_image)
PromptServer.instance.send_sync(
"magic_quill/final_image", {"image": final_image_base64, "image_name": image}
)
return (latent_samples, final_image, lineart_output, color_output)
@classmethod
def IS_CHANGED(self, image, original_image, add_color_image, add_edge_image, remove_edge_image, model, vae, clip, base_model_version, positive_prompt, negative_prompt, dtype, grow_size, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(self, image, original_image, add_color_image, add_edge_image, remove_edge_image, model, vae, clip, base_model_version, positive_prompt, negative_prompt, dtype, grow_size, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True