-
Notifications
You must be signed in to change notification settings - Fork 1
/
plmodule_gan.py
344 lines (290 loc) · 14.7 KB
/
plmodule_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# File : solver_gan.py
# Author : Jing Mai <jingmai@pku.edu.cn>
# Date : 05.19.2022
# Last Modified Date: 05.19.2022
# Last Modified By : Jing Mai <jingmai@pku.edu.cn>
from pytorch_lightning import LightningModule
from models_gan import Generator, Discriminator
import torch
import torch.nn.functional as F
from plmodule_data import SparseMolecularDataModule
from mol_utils import all_scores, save_mol_img
import numpy as np
import os
import torch.nn as nn
import logging
logger = logging.getLogger(__name__)
class MolGAN(LightningModule):
def __init__(self,
z_dim,
g_conv_dims,
d_conv_dims,
num_nodes,
m_dim,
b_dim,
dropout_rate,
data_module: SparseMolecularDataModule,
num_sampled_imgs,
post_method,
*args, **kwargs):
""" MolGAN model.
Args:
z_dim (int): sampled latent vector dimension
g_conv_dims (list): Generator convolutional layer dimensions.
num_nodes (int): number of nodes in the graph.
m_dim (int): number of atoms in the molecule
b_dim (int): number of bonds in the molecule
"""
super(MolGAN, self).__init__()
self.save_hyperparameters(ignore=['data_module'])
self.data_module = data_module
self.dummy_param = nn.Parameter(torch.empty(0))
# network
self.G = Generator(conv_dims=g_conv_dims,
z_dim=z_dim,
vertexes=num_nodes,
edges=b_dim,
nodes=m_dim,
dropout_rate=dropout_rate)
# TODO(Jing Mai): Why we use `b_dim-1`?
self.D = Discriminator(conv_dim=d_conv_dims,
b_dim=b_dim-1,
m_dim=m_dim,
dropout_rate=dropout_rate)
self.V = Discriminator(conv_dim=d_conv_dims,
b_dim=b_dim-1,
m_dim=m_dim,
dropout_rate=dropout_rate)
self.sampled_img_z = torch.randn(num_sampled_imgs, z_dim)
# Important: This property activates manual optimization.
self.automatic_optimization = False
# dynamically adjusted variables
self.current_lambda_wgan = 1
@property
def device(self):
return self.dummy_param.device
@staticmethod
def postprocess(inputs, method, temperature=1.):
def listify(x):
return x if type(x) == list or type(x) == tuple else [x]
def delistify(x):
return x if len(x) > 1 else x[0]
if method == 'soft_gumbel':
softmax = [F.gumbel_softmax(e_logits.contiguous().view(-1, e_logits.size(-1))
/ temperature, hard=False).view(e_logits.size())
for e_logits in listify(inputs)]
elif method == 'hard_gumbel':
softmax = [F.gumbel_softmax(e_logits.contiguous().view(-1, e_logits.size(-1))
/ temperature, hard=True).view(e_logits.size())
for e_logits in listify(inputs)]
elif method == 'softmax':
softmax = [F.softmax(e_logits / temperature, -1)
for e_logits in listify(inputs)]
else:
raise ValueError('Unknown postprocessing method: {}'.format(method))
return [delistify(e) for e in (softmax)]
def reward(self, mols):
return self.data_module.reward(mols)
def matrices2mol(self, node_labels, edge_labels, strict):
return self.data_module.data.matrices2mol(node_labels, edge_labels, strict)
def get_gen_mols(self, nodes_hat, edges_hat, method):
(edges_hard, nodes_hard) = self.postprocess((edges_hat, nodes_hat), method)
edges_hard, nodes_hard = torch.max(edges_hard, -1)[1], torch.max(nodes_hard, -1)[1]
mols = [self.data_module.data.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
for e_, n_ in zip(edges_hard, nodes_hard)]
return mols
def get_reward(self, nodes_hat, edges_hat, method):
mols = self.get_gen_mols(nodes_hat, edges_hat, method)
reward = torch.from_numpy(self.reward(mols))
return reward
def forward(self, z):
return self.G(z)
def compute_gradient_penalty(self, real_edges, real_nodes, fake_edges, fake_nodes):
"""Calculates the gradient penalty loss for WGAN GP"""
def gp_norm(y, x):
dydx = torch.autograd.grad(outputs=y, inputs=x,
grad_outputs=torch.ones(y.size()).type_as(y),
create_graph=True, retain_graph=True, only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
return ((dydx.norm(2, dim=1) - 1) ** 2).mean()
# Random weight term for interpolation between real and fake samples
edge_alpha = torch.rand(real_edges.size(0), 1, 1, 1).type_as(real_edges).requires_grad_(False)
node_alpha = edge_alpha.reshape(-1, 1, 1).requires_grad_(False)
# Get random interpolation between real and fake samples
edge_interpolates = (edge_alpha * real_edges + ((1 - edge_alpha) * fake_edges)).requires_grad_(True)
node_interpolates = (node_alpha * real_nodes + ((1 - node_alpha) * fake_nodes)).requires_grad_(True)
# enable gradient calculation temporarily, coz the outer validation/test loop will disable it
with torch.enable_grad():
# FIXME(Jing Mai): Different from the TF code. Both are ok.
logits_interpolates, features_interpolates = self.D(edge_interpolates, None, node_interpolates)
obj = logits_interpolates.mean() + features_interpolates.mean()
edge_gp = gp_norm(obj, edge_interpolates)
node_gp = gp_norm(obj, node_interpolates)
gp = edge_gp + node_gp
return gp
def on_train_start(self):
# The first half epochs use the WGAN objective only
self.current_lambda_wgan = 1
def on_train_epoch_start(self):
# The second half epochs using both RL and WGAN.
if self.current_epoch * 2 >= self.hparams.max_epochs:
self.current_lambda_wgan = self.hparams.lambda_wgan
def compute_d_loss(self, batch, batch_idx, z):
"""Computes the discriminator loss for a batch of samples. """
mols, A_onehot, X_onehot = batch['mols'], batch['A_onehot'], batch['X_onehot']
# pass real samples to discriminator
logits_real, features_real = self.D(A_onehot, None, X_onehot)
# pass latent space samples z to target
edge_logits, node_logits = self.G(z)
# postprocess with Gumbel softmax
(edges_hat, nodes_hat) = self.postprocess(inputs=(edge_logits, node_logits), method=self.hparams.post_method)
# pass fake samples to discriminator
logits_fake, features_fake = self.D(edges_hat, None, nodes_hat)
# gradient penalty
grad_penalty = self.compute_gradient_penalty(A_onehot, X_onehot, edges_hat, nodes_hat)
d_loss_real = torch.mean(logits_real)
d_loss_fake = torch.mean(logits_fake)
d_loss = - d_loss_real + d_loss_fake + self.hparams.lambda_gp * grad_penalty
output = {
'd_loss': d_loss,
'd_loss_R': d_loss_real,
'd_loss_F': d_loss_fake,
'd_loss_GP': grad_penalty
}
return output
def compute_gv_loss(self, batch, batch_idx, z):
""" Computes the generator loss and the value loss for a batch of samples. """
mols, A_onehot, X_onehot = batch['mols'], batch['A_onehot'], batch['X_onehot']
# pass latent space samples z to target
edge_logits, node_logits = self.G(z)
# postprocess with Gumbel softmax
edges_hat, nodes_hat = self.postprocess(inputs=(edge_logits, node_logits), method=self.hparams.post_method)
# pass fake samples to discriminator
logits_fake, features_fake = self.D(edges_hat, None, nodes_hat)
# Value losses
value_logit_real, _ = self.V(A_onehot, None, X_onehot, activation=torch.sigmoid)
value_logit_fake, _ = self.V(edges_hat, None, nodes_hat, activation=torch.sigmoid)
# real reward
reward_real = torch.from_numpy(self.data_module.reward(mols)).type_as(A_onehot)
# fake reward
reward_fake = self.get_reward(nodes_hat, edges_hat, method=self.hparams.post_method).type_as(A_onehot)
g_loss = - logits_fake
v_loss = (value_logit_real - reward_real) ** 2 + (value_logit_fake - reward_fake) ** 2
rl_loss = - value_logit_fake
g_loss = g_loss.mean()
v_loss = v_loss.mean()
rl_loss = rl_loss.mean()
alpha = torch.abs(g_loss.detach() / rl_loss.detach()).detach()
train_step_G = self.current_lambda_wgan * g_loss + alpha * (1 - self.current_lambda_wgan) * rl_loss
train_step_V = v_loss
output = {'g_loss': g_loss,
'v_loss': v_loss,
'rl_loss': rl_loss,
'train_step_G': train_step_G,
'train_step_V': train_step_V}
return output
def get_scores(self, nodes_logits, edges_logits, post_method):
mols = self.get_gen_mols(nodes_logits, edges_logits, post_method)
m0, m1 = all_scores(mols, self.data_module.data, norm=True) # 'mols' is output of Fake Reward
scores = m1.copy()
for k, v in m0.items():
d = np.array(v)[np.nonzero(v)]
scores[k] = 0 if len(d) ==0 else d.mean()
return scores
def training_step(self, batch, batch_idx):
mols, A_onehot, X_onehot = batch['mols'], batch['A_onehot'], batch['X_onehot']
opt_g, opt_d, opt_v = self.optimizers()
# ========================================================== #
# Train Discriminator #
# ========================================================== #
# sample noise
z = torch.randn(A_onehot.shape[0], self.hparams.z_dim).type_as(A_onehot)
d_loss_dict = self.compute_d_loss(batch, batch_idx, z)
# back propagate discriminator's gradient if `current_lambda_wgan` is greater than zero.
if self.current_lambda_wgan > 0:
opt_d.zero_grad()
self.manual_backward(d_loss_dict['d_loss'])
opt_d.step()
# ========================================================== #
# Train Generator & Value Network #
# ========================================================== #
gv_loss_dict = self.compute_gv_loss(batch, batch_idx, z)
# back propagate the generator's and the value network's gradient every `n_critic` steps
if (self.global_step + 1) % self.hparams.n_critic == 0:
opt_g.zero_grad()
opt_v.zero_grad()
self.manual_backward(gv_loss_dict['train_step_G'], retain_graph=True)
self.manual_backward(gv_loss_dict['train_step_V'])
opt_g.step()
opt_v.step()
output = dict(d_loss_dict, **gv_loss_dict)
return output
def training_epoch_end(self, outputs):
keys = outputs[0].keys()
avg_output = {k: torch.stack([x[k] for x in outputs]).mean() for k in keys}
prefix = 'train/'
metrics = {prefix + k: v for k, v in avg_output.items()}
self.log_dict(metrics)
log_str = "Epoch {}/{}: ".format(self.current_epoch, self.hparams.max_epochs)
log_str += ', '.join(['{}: {}'.format(k, v) for k, v in metrics.items()])
logger.info(log_str)
def _shared_eval_step(self, batch, batch_idx):
mols, A_onehot, X_onehot = batch['mols'], batch['A_onehot'], batch['X_onehot']
# sample noise
z = torch.randn(A_onehot.shape[0], self.hparams.z_dim).type_as(A_onehot)
edge_logits, node_logits = self.G(z)
d_loss_dict = self.compute_d_loss(batch, batch_idx, z)
gv_loss_dict = self.compute_gv_loss(batch, batch_idx, z)
score_dict = self.get_scores(node_logits, edge_logits, self.hparams.post_method)
metrics = dict(d_loss_dict, **gv_loss_dict, **score_dict)
return metrics
def validation_step(self, batch, batch_idx):
metrics = self._shared_eval_step(batch, batch_idx)
return metrics
def test_step(self, batch, batch_idx):
metrics = self._shared_eval_step(batch, batch_idx)
return metrics
def _shared_eval_epoch_end(self, outputs):
keys = outputs[0].keys()
def arraylike_mean(x_list):
if isinstance(x_list[0], torch.Tensor):
return torch.stack(x_list).mean()
elif isinstance(x_list[0], np.ndarray):
return np.stack(x_list).mean()
else:
return np.array(x_list).mean()
avg_output = {k: arraylike_mean([x[k] for x in outputs]) for k in keys}
return avg_output
def validation_epoch_end(self, outputs):
metrics = self._shared_eval_epoch_end(outputs)
prefix = 'val/'
metrics = {prefix + k: v for k, v in metrics.items()}
self.log_dict(metrics)
log_str = "Epoch {}/{}: ".format(self.current_epoch, self.hparams.max_epochs)
log_str += ', '.join(['{}: {}'.format(k, v) for k, v in metrics.items()])
logger.info(log_str)
def test_epoch_end(self, outputs):
metrics = self._shared_eval_epoch_end(outputs)
prefix = 'test/'
metrics = {prefix + k: v for k, v in metrics.items()}
self.log_dict(metrics)
log_str = "Epoch {}/{}: ".format(self.current_epoch, self.hparams.max_epochs)
log_str += ', '.join(['{}: {}'.format(k, v) for k, v in metrics.items()])
logger.info(log_str)
def configure_optimizers(self):
self.opt_g = torch.optim.Adam(self.G.parameters(), lr=self.hparams.lr_g)
self.opt_d = torch.optim.Adam(self.D.parameters(), lr=self.hparams.lr_d)
self.opt_v = torch.optim.Adam(self.V.parameters(), lr=self.hparams.lr_v)
return self.opt_g, self.opt_d, self.opt_v
def _shared_on_eval_epoch_end(self):
edges_logits, nodes_logits = self.G(self.sampled_img_z.to(self.device))
mols = self.get_gen_mols(nodes_logits, edges_logits, self.hparams.post_method)
# Saving molecule images.
mol_f_name = os.path.join(self.hparams.img_dir, 'mol-{}.png'.format(self.current_epoch))
save_mol_img(mols, mol_f_name, is_test=True)
def on_val_epoch_end(self):
self._shared_on_eval_epoch_end()
def on_test_epoch_end(self):
self._shared_on_eval_epoch_end()