-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpla_pred.m
1019 lines (887 loc) · 39.3 KB
/
gpla_pred.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [Eft, Varft, lpyt, Eyt, Varyt] = gpla_pred(gp, x, y, varargin)
%GPLA_PRED Predictions with Gaussian Process Laplace approximation
%
% Description
% [EFT, VARFT] = GPLA_PRED(GP, X, Y, XT, OPTIONS)
% takes a GP structure together with matrix X of training
% inputs and vector Y of training targets, and evaluates the
% predictive distribution at test inputs XT. Returns a posterior
% mean EFT and variance VARFT of latent variables and the
% posterior predictive mean EYT and variance VARYT.
%
% [EFT, VARFT, LPYT] = GPLA_PRED(GP, X, Y, XT, 'yt', YT, OPTIONS)
% returns also logarithm of the predictive density LPYT of the
% observations YT at test input locations XT. This can be used
% for example in the cross-validation. Here Y has to be a vector.
%
% [EFT, VARFT, LPYT, EYT, VARYT] = GPLA_PRED(GP, X, Y, XT, OPTIONS)
% returns also the posterior predictive mean EYT and variance VARYT.
%
% [EF, VARF, LPY, EY, VARY] = GPLA_PRED(GP, X, Y, OPTIONS)
% evaluates the predictive distribution at training inputs X
% and logarithm of the predictive density LPYT of the training
% observations Y.
%
% OPTIONS is optional parameter-value pair
% predcf - an index vector telling which covariance functions are
% used for prediction. Default is all (1:gpcfn).
% See additional information below.
% tstind - a vector/cell array defining, which rows of X belong
% to which training block in *IC type sparse models.
% Default is []. In case of PIC, a cell array
% containing index vectors specifying the blocking
% structure for test data. IN FIC and CS+FIC a
% vector of length n that points out the test inputs
% that are also in the training set (if none, set
% TSTIND = [])
% yt - optional observed yt in test points (see below)
% z - optional observed quantity in triplet (x_i,y_i,z_i)
% Some likelihoods may use this. For example, in case of
% Poisson likelihood we have z_i=E_i, that is, expected value
% for ith case.
% zt - optional observed quantity in triplet (xt_i,yt_i,zt_i)
% Some likelihoods may use this. For example, in case of
% Poisson likelihood we have z_i=E_i, that is, the expected
% value for the ith case.
% fcorr - Method used for latent marginal posterior corrections.
% Default is 'off'. For Laplace possible methods are
% 'fact' and 'cm2'. If method is 'on', 'cm2' is used
% for Laplace.
%
% NOTE! In case of FIC and PIC sparse approximation the
% prediction for only some PREDCF covariance functions is just
% an approximation since the covariance functions are coupled in
% the approximation and are not strictly speaking additive
% anymore.
%
% For example, if you use covariance such as K = K1 + K2 your
% predictions Eft1 = ep_pred(GP, X, Y, X, 'predcf', 1) and
% Eft2 = ep_pred(gp, x, y, x, 'predcf', 2) should sum up to
% Eft = ep_pred(gp, x, y, x). That is Eft = Eft1 + Eft2. With
% FULL model this is true but with FIC and PIC this is true only
% approximately. That is Eft \approx Eft1 + Eft2.
%
% With CS+FIC the predictions are exact if the PREDCF covariance
% functions are all in the FIC part or if they are CS
% covariances.
%
% NOTE! When making predictions with a subset of covariance
% functions with FIC approximation the predictive variance can
% in some cases be ill-behaved i.e. negative or unrealistically
% small. This may happen because of the approximative nature of
% the prediction.
%
% See also
% GPLA_E, GPLA_G, GP_PRED, DEMO_SPATIAL, DEMO_CLASSIFIC
%
% Copyright (c) 2007-2010 Jarno Vanhatalo
% Copyright (c) 2012 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'GPLA_PRED';
ip.addRequired('gp', @isstruct);
ip.addRequired('x', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))
ip.addRequired('y', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))
ip.addOptional('xt', [], @(x) isempty(x) || (isreal(x) && all(isfinite(x(:)))))
ip.addParamValue('yt', [], @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('z', [], @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('zt', [], @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('predcf', [], @(x) isempty(x) || ...
isvector(x) && isreal(x) && all(isfinite(x)&x>0))
ip.addParamValue('tstind', [], @(x) isempty(x) || iscell(x) ||...
(isvector(x) && isreal(x) && all(isfinite(x)&x>0)))
ip.addParamValue('fcorr', 'off', @(x) ismember(x, {'off', ...
'cm2', 'fact', 'on'}))
if numel(varargin)==0 || isnumeric(varargin{1})
% inputParser should handle this, but it doesn't
ip.parse(gp, x, y, varargin{:});
else
ip.parse(gp, x, y, [], varargin{:});
end
xt=ip.Results.xt;
yt=ip.Results.yt;
z=ip.Results.z;
zt=ip.Results.zt;
predcf=ip.Results.predcf;
tstind=ip.Results.tstind;
fcorr=ip.Results.fcorr;
if isempty(xt)
xt=x;
if isempty(tstind)
if iscell(gp)
gptype=gp{1}.type;
else
gptype=gp.type;
end
switch gptype
case {'FULL' 'VAR' 'DTC' 'SOR'}
tstind = [];
case {'FIC' 'CS+FIC'}
tstind = 1:size(x,1);
case 'PIC'
if iscell(gp)
tstind = gp{1}.tr_index;
else
tstind = gp.tr_index;
end
end
end
if isempty(yt)
yt=y;
end
if isempty(zt)
zt=z;
end
end
[tn, tnin] = size(x);
switch gp.type
case 'FULL'
% ============================================================
% FULL
% ============================================================
if ~isfield(gp.lik, 'nondiagW')
% Likelihoods with diagonal Hessian
%[e, edata, eprior, f, L, a, W, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[e, edata, eprior, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[f, L, W, p] = deal(p.f, p.L, p.La2, p.p);
ntest=size(xt,1);
% notice the order xt,x to avoid transpose later
K_nf = gp_cov(gp,xt,x,predcf);
if isfield(gp,'meanf')
[H,b_m,B_m,Hs]=mean_prep(gp,x,xt);
K_nf=K_nf + Hs'*B_m*H;
K = gp_trcov(gp, x);
K = K+H'*B_m*H;
end
% Evaluate the mean
if issparse(K_nf) && issparse(L)
if isempty(z)
deriv = gp.lik.fh.llg(gp.lik, y(p), f, 'latent', z);
else
deriv = gp.lik.fh.llg(gp.lik, y(p), f, 'latent', z(p));
end
Eft = K_nf(:,p)*deriv;
else
deriv = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
Eft = K_nf*deriv;
if isfield(gp,'meanf')
Eft=Eft + K_nf*(K\H'*b_m);
end
end
if nargout > 1
% Evaluate the variance
kstarstar = gp_trvar(gp,xt,predcf);
if isfield(gp,'meanf')
kstarstar= kstarstar + diag(Hs'*B_m*Hs);
end
if W >= 0
% This is the usual case where likelihood is log concave
% for example, Poisson and probit
if issparse(K_nf) && issparse(L)
% If compact support covariance functions are used
% the covariance matrix will be sparse
sqrtW = sqrt(W);
sqrtWKfn = sqrtW*K_nf(:,p)';
V = ldlsolve(L,sqrtWKfn);
Varft = kstarstar - sum(sqrtWKfn.*V,1)';
else
W = diag(W);
V = L\(sqrt(W)*K_nf');
Varft = kstarstar - sum(V'.*V',2);
end
else
% We may end up here if the likelihood is not log concace
% For example Student-t likelihood
V = L*diag(W);
R = diag(W) - V'*V;
Varft = kstarstar - sum(K_nf.*(R*K_nf')',2);
end
end
else
% Likelihoods with non-diagonal Hessian
[tn,nout]=size(y);
%[e, edata, eprior, f, L, a, E, M] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[e, edata, eprior, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[f, L, a, E, M] = deal(p.f, p.L, p.a, p.La2, p.p);
switch gp.lik.type
case {'LGP', 'LGPC'}
W=-gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
ntest=size(xt,1);
nl=tn;
nlt=ntest;
nlp=length(nl); % number of latent processes
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
% Use Kronecker product kron(Ka,Kb) instead of K
gptmp=gp; gptmp.jitterSigma2=0;
ls=gptmp.cf{1}.lengthScale;
if numel(ls)>1
gptmp.cf{1}.lengthScale=ls(1);
end
Ka = gp_trcov(gptmp, unique(x(:,1)));
% fix the magnitude sigma to 1 for Kb matrix
wtmp=gp_pak(gptmp); wtmp(1)=0; gptmp=gp_unpak(gptmp,wtmp);
if numel(ls)>1
gptmp.cf{1}.lengthScale=ls(2);
end
Kb = gp_trcov(gptmp, unique(x(:,2)));
clear gptmp
n1=size(Ka,1);
n2=size(Kb,1);
[Va,Da]=eig(Ka); [Vb,Db]=eig(Kb);
% eigenvalues of K matrix
Dtmp=kron(diag(Da),diag(Db));
[sDtmp,istmp]=sort(Dtmp,'descend');
n = size(y,1);
% Form the low-rank approximation. Exclude eigenvalues
% smaller than gp.latent_opt.eig_tol or take
% gp.latent_opt.eig_prct*n eigenvalues at most.
nlr=min([sum(sDtmp>gp.latent_opt.eig_tol) round(gp.latent_opt.eig_prct*n)]);
sDtmp=sDtmp+gp.jitterSigma2;
itmp1=meshgrid(1:n1,1:n2);
itmp2=meshgrid(1:n2,1:n1)';
ind=[itmp1(:) itmp2(:)];
% included eigenvalues
Dlr=sDtmp(1:nlr);
% included eigenvectors
Vlr=zeros(n,nlr);
for i1=1:nlr
Vlr(:,i1)=kron(Va(:,ind(istmp(i1),1)),Vb(:,ind(istmp(i1),2)));
end
else
K_nf = gp_cov(gp,xt,x,predcf);
K = gp_trcov(gp, x);
end
if isfield(gp,'meanf')
[H,b_m,B_m Hs]=mean_prep(gp,x,xt);
if ~(isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1)
K_nf=K_nf + Hs'*B_m*H;
%K = gp_trcov(gp, x);
K = K+H'*B_m*H;
end
end
% Evaluate the mean
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
Eft=f;
else
deriv = feval(gp.lik.fh.llg, gp.lik, y, f, 'latent', z);
Eft = K_nf*deriv;
if isfield(gp,'meanf')
Eft=Eft + K_nf*(K\H'*b_m);
%Eft=Eft + K_nf*(K\Hs'*b_m);
end
end
if nargout > 1
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
Lb=gp_trvar(gp,x)-sum(bsxfun(@times,Vlr.*Vlr,Dlr'),2);
if isfield(gp,'meanf')
Dt=[Dlr; diag(B_m)];
Vt=[Vlr H'];
else
Dt=Dlr;
Vt=Vlr;
end
g2 = feval(gp.lik.fh.llg2, gp.lik, y, f, 'latent', z);
Lbt=sum(y)*(g2)+1./Lb;
St=[diag(1./Dt)+Vt'*bsxfun(@times,1./Lb,Vt) zeros(size(Dt,1),1); ...
zeros(1,size(Dt,1)) 1];
Pt=[bsxfun(@times,1./Lb,Vt) sqrt(sum(y))*g2];
Ptt=bsxfun(@times,1./sqrt(Lbt),Pt);
StL=chol(St-Ptt'*Ptt,'lower');
iStL=StL\(bsxfun(@times,Pt',1./Lbt'));
Covfd=1./Lbt;
Covfu=iStL;
Covf{1}=Covfd; Covf{2}=Covfu;
else
% Evaluate the variance
if isempty(predcf)
kstarstarfull = gp_trcov(gp,xt);
else
kstarstarfull = gp_trcov(gp,xt,predcf);
end
if isfield(gp,'meanf')
kstarstarfull = kstarstarfull + Hs'*B_m*Hs;
end
if strcmpi(gp.lik.type,'LGPC')
g2 = feval(gp.lik.fh.llg2, gp.lik, y, f, 'latent', z);
g2sq=sqrt(g2);
n1=gp.lik.gridn(1); n2=gp.lik.gridn(2);
ny2=sum(reshape(y,fliplr(gp.lik.gridn)));
R=zeros(tn);
for k1=1:n1
R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)=sqrt(ny2(k1))*(diag(g2sq((1:n2)+(k1-1)*n2))-g2((1:n2)+(k1-1)*n2)*g2sq((1:n2)+(k1-1)*n2)');
%RKR(:,(1:n2)+(k1-1)*n2)=RKR(:,(1:n2)+(k1-1)*n2)*R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2);
end
KR=K*R;
RKR=R'*KR;
RKR(1:(size(K,1)+1):end)=RKR(1:(size(K,1)+1):end)+1;
[L,notpositivedefinite] = chol(RKR,'lower');
K_nfR=K_nf*R;
Ltmp=L\K_nfR';
Covf=kstarstarfull-(Ltmp'*Ltmp);
else
g2 = feval(gp.lik.fh.llg2, gp.lik, y, f, 'latent', z);
g2sq = sqrt(g2);
ny=sum(y);
KR=bsxfun(@times,K,g2sq')-(K*g2)*g2sq';
RKR=ny*(bsxfun(@times,g2sq,KR)-g2sq*(g2'*KR));
RKR(1:(size(K,1)+1):end)=RKR(1:(size(K,1)+1):end)+1;
[L,notpositivedefinite] = chol(RKR,'lower');
K_nfR=bsxfun(@times,K_nf,g2sq')-(K_nf*g2)*g2sq';
Ltmp=L\K_nfR';
Covf=kstarstarfull-ny*(Ltmp'*Ltmp);
end
end
end
case {'Softmax', 'Multinom'}
if isfield(gp, 'comp_cf') % own covariance for each ouput component
multicf = true;
if length(gp.comp_cf) ~= nout && nout > 1
error('GPLA_ND_E: the number of component vectors in gp.comp_cf must be the same as number of outputs.')
end
if ~isempty(predcf)
if ~iscell(predcf) || length(predcf)~=nout && nout > 1
error(['GPLA_ND_PRED: if own covariance for each output component is used,'...
'predcf has to be cell array and contain nout (vector) elements. '])
end
else
predcf = gp.comp_cf;
end
else
multicf = false;
for i1=1:nout
predcf2{i1} = predcf;
end
predcf=predcf2;
end
ntest=size(xt,1);
% K_nf is 3-D covariance matrix where each slice corresponds to
% each latent process (output)
K_nf = zeros(ntest,tn,nout);
if multicf
for i1=1:nout
K_nf(:,:,i1) = gp_cov(gp,xt,x,predcf{i1});
end
else
for i1=1:nout
K_nf(:,:,i1) = gp_cov(gp,xt,x,predcf{i1});
end
end
nout=size(y,2);
f2=reshape(f,tn,nout);
llg_vec = gp.lik.fh.llg(gp.lik, y, f2, 'latent', z);
llg = reshape(llg_vec,size(y));
%mu_star = K_nf*reshape(a,tn,nout);
a=reshape(a,size(y));
for i1 = 1:nout
% Ef(:,i1) = K_nf(:,:,i1)*llg(:,i1);
Eft(:,i1) = K_nf(:,:,i1)*a(:,i1);
end
if nargout > 1
[pi2_vec, pi2_mat] = gp.lik.fh.llg2(gp.lik, y, f2, 'latent', z);
% W = -diag(pi2_vec) + pi2_mat*pi2_mat', where
% W_ij = -d^2(log(p(y|f)))/(df_i)(df_j)
Covf=zeros(nout, nout, ntest);
R=(repmat(1./pi2_vec,1,tn).*pi2_mat);
for i1=1:nout
b=E(:,:,i1)*K_nf(:,:,i1)';
c_cav = R((1:tn)+(i1-1)*tn,:)*(M\(M'\(R((1:tn)+(i1-1)*tn,:)'*b)));
for j1=1:nout
c=E(:,:,j1)*c_cav;
Covf(i1,j1,:)=sum(c.*K_nf(:,:,j1)');
end
kstarstar = gp_trvar(gp,xt,predcf{i1});
Covf(i1,i1,:) = squeeze(Covf(i1,i1,:)) + kstarstar - sum(b.*K_nf(:,:,i1)')';
end
end
% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
% INPUT-DEPENDENT
% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
otherwise
% number of points to predict
ntest = size(xt, 1);
if isfield(gp.lik, 'xtime')
xtime = gp.lik.xtime;
if isfield(gp.lik, 'stratificationVariables')
ebc_ind = gp.lik.stratificationVariables;
ux = unique([x(:, ebc_ind); xt(:, ebc_ind)], 'rows');
gp.lik.n_u = size(ux, 1);
for i1 = 1:size(ux, 1)
gp.lik.stratind{i1} = (x(:,ebc_ind) == ux(i1));
gp.lik.stratindt{i1} = (xt(:,ebc_ind) == ux(i1));
end
[xtime1, xtime2] = meshgrid(ux, xtime);
xtime = [xtime2(:) xtime1(:)];
if isfield(gp.lik, 'removeStratificationVariables') && gp.lik.removeStratificationVariables
x(:, ebc_ind) = [];
xt(:, ebc_ind) = [];
end
end
ntime = size(xtime,1);
nl = [ntime tn];
nlt = [ntime ntest];
% second derivatives of log-likelihood
[llg2diag, llg2mat] = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
% W = [diag(Wdiag(1:ntime)) Wmat; Wmat' diag(Wdiag(ntime+1:end))]
Wdiag = - llg2diag; Wmat = - llg2mat;
else
nl = repmat(tn, 1, length(gp.comp_cf));
nlt = repmat(ntest, 1, length(gp.comp_cf));
% Number of latent processes
nlp = length(nl);
% indexes for diagonal matrix
ind1 = repelem((1:(nlp+1):nlp^2)*tn + 1 - tn, tn) + repmat((0:(tn-1)), 1, nlp);
% auxiliar indexes for the training points
nlind = reshape(1:tn*nlp, tn, nlp)';
% auxiliar indexes for the test cases
nltind = reshape(1:ntest*nlp, ntest, nlp)';
% second derivatives of log-likelihood
Wvec = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
if isequal(gp.lik.type, 'inputdependentt') && strcmp(gp.lik.fisher, 'on')
[~, Wvec2] = gp.lik.fh.fi(gp.lik, y, f, 'latent', z);
elseif isequal(gp.lik.type, 'inputdependentt')
[~, Wvec2] = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
Wvec2 = -Wvec2;
end
Wdiag = Wvec(ind1)';
end
% K_nf is K(x, xt) covariance matrix where blocks correspond to latent processes
K_nf = zeros(sum(nlt), sum(nl));
if isempty(predcf)
K_nf(nltind(2, :), nlind(2, :)) = gp_cov(gp, xt, x, gp.comp_cf{2});
if isfield(gp.lik, 'xtime')
K_nf(nltind(1, :), nlind(1, :)) = gp_cov(gp,xtime, xtime, gp.comp_cf{1});
else
K_nf(nltind(1, :), nlind(1, :)) = gp_cov(gp,xt,x, gp.comp_cf{1});
end
else
K_nf(nltind(2, :), nlind(2, :)) = gp_cov(gp, xt, x, intersect(gp.comp_cf{2}, predcf));
if isfield(gp.lik, 'xtime')
K_nf(nltind(1, :), nlind(1, :)) = gp_cov(gp,xtime, xtime, intersect(gp.comp_cf{1}, predcf));
else
K_nf(nltind(1, :), nlind(1, :)) = gp_cov(gp,xt,x, intersect(gp.comp_cf{1}, predcf));
end
end
% mean function
if isfield(gp, 'meanf')
[H, b_m, B_m Hs] = mean_prep(gp, x, xt);
if ~(isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron == 1)
K_nf = K_nf + Hs' * B_m*H;
K = gp_trcov(gp, x);
K = K + H' * B_m * H;
end
end
deriv = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
Eft = K_nf * deriv;
if isfield(gp,'meanf')
Eft = Eft + K_nf * (K \ H' * b_m);
% Eft = Eft + K_nf*(K\Hs'*b_m);
end
if nargout > 1
% Evaluate the variance
% Kss is K(X*, X*) covariance matrix between test points, where each block corresponds to latent processes
Kss = zeros(sum(nlt));
if isempty(predcf)
Kss(nltind(2, :), nltind(2, :)) = gp_trcov(gp,xt,gp.comp_cf{2});
if isfield(gp.lik,'xtime')
Kss(nltind(1, :), nltind(1, :)) = gp_trcov(gp,xtime,gp.comp_cf{1});
else
Kss(nltind(1, :), nltind(1, :)) = gp_trcov(gp,xt,gp.comp_cf{1});
end
else
Kss(nltind(2, :), nltind(2, :)) = gp_trcov(gp,xt,intersect(gp.comp_cf{2}, predcf));
if isfield(gp.lik,'xtime')
Kss(nltind(1, :), nltind(1, :)) = gp_trcov(gp,xtime,intersect(gp.comp_cf{1}, predcf));
else
Kss(nltind(1, :), nltind(1, :)) = gp_trcov(gp,xt,intersect(gp.comp_cf{1}, predcf));
end
end
if isfield(gp,'meanf')
Kss = Kss + Hs' * B_m * Hs;
end
% iB = inv(I + W*K)
% iB = L\eye(sum(nl));
% here L = B !!!!
[L1, U1] = lu(L);
if isfield(gp.lik,'xtime')
iBW11 = bsxfun(@times, iB(1:nl(1),1:nl(1)),Wdiag(1:nl(1))');
iBW12 = bsxfun(@times, iB(1:nl(1),nl(1)+(1:nl(2))), Wdiag(nl(1)+(1:nl(2)))');
iBW22 = bsxfun(@times, iB(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))),Wdiag(nl(1)+(1:nl(2)))');
iBW11 = iBW11 + iB(1:nl(1), nl(1) + (1:nl(2))) * Wmat';
iBW12 = iBW12 + iB(1:nl(1), 1:nl(1)) * Wmat;
iBW22 = iBW22 + iB(nl(1) + (1:nl(2)), 1:nl(1)) * Wmat;
iBW = [iBW11 iBW12; iBW12' iBW22];
else
% iBW = U1 \ (L1 \ Wvec2);
iBW = U1 \ (L1 \ sparse(Wvec2));
% iBW = zeros(sum(tn * nlp));
% for ii = 1:nlp
% for jj = ii:nlp
% for kk = 1:nlp
% iBW(nlind(ii, :), nlind(jj, :)) = iBW(nlind(ii, :), nlind(jj, :)) ...
% + bsxfun(@times, iB(nlind(jj, :), nlind(kk, :)), Wvec(nlind(kk, :), jj));
% end
% if ii ~= jj
% iBW(nlind(jj, :), nlind(ii, :)) = iBW(nlind(ii, :), nlind(jj, :))';
% end
% end
% end
end
KiBWK = K_nf * iBW * K_nf';
% Covf = K(X*,X*) - K(X,X*)*inv(I+WK)*W*K(X*,X)
Covf = Kss - KiBWK;
end
end
if nargout > 1
Varft = Covf;
end
end
case 'FIC'
% ============================================================
% FIC
% ============================================================
% Predictions with FIC sparse approximation for GP
% Here tstind = 1 if the prediction is made for the training set
if nargin > 6
if ~isempty(tstind) && length(tstind) ~= size(x,1)
error('tstind (if provided) has to be of same length as x.')
end
else
tstind = [];
end
u = gp.X_u;
K_fu = gp_cov(gp, x, u, predcf); % f x u
K_uu = gp_trcov(gp, u, predcf); % u x u, noiseles covariance K_uu
K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu
Luu = chol(K_uu)';
m = size(u,1);
%[e, edata, eprior, f, L, a, La2] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[e, edata, eprior, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
if isnan(e)
Eft=NaN; Varft=NaN; lpyt=NaN; Eyt=NaN; Varyt=NaN;
return
end
[f, La2] = deal(p.f, p.La2);
deriv = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
ntest=size(xt,1);
K_nu=gp_cov(gp,xt,u,predcf);
Eft = K_nu*(Luu'\(Luu\(K_fu'*deriv)));
% if the prediction is made for training set, evaluate Lav also for prediction points
if ~isempty(tstind)
[Kv_ff, Cv_ff] = gp_trvar(gp, xt(tstind,:), predcf);
B=Luu\(K_fu');
Qv_ff=sum(B.^2)';
%Lav = zeros(size(La));
%Lav(tstind) = Kv_ff-Qv_ff;
Lav = Kv_ff-Qv_ff;
Eft(tstind) = Eft(tstind) + Lav.*deriv;
end
% Evaluate the variance
if nargout > 1
% re-evaluate matrices with training components
Kfu_tr = gp_cov(gp, x, u);
Kuu_tr = gp_trcov(gp, u);
Kuu_tr = (K_uu+K_uu')./2;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
kstarstar = gp_trvar(gp,xt,predcf);
La = W.*La2;
Lahat = 1 + La;
B = (repmat(sqrt(W),1,m).*Kfu_tr);
% Components for (I + W^(1/2)*(Qff + La2)*W^(1/2))^(-1) = Lahat^(-1) - L2*L2'
B2 = repmat(Lahat,1,m).\B;
A2 = Kuu_tr + B'*B2; A2=(A2+A2')/2;
L2 = B2/chol(A2);
% Set params for K_nf
BB=Luu\(B');
BB2=Luu\(K_nu');
Varft = kstarstar - sum(BB2'.*(BB*(repmat(Lahat,1,m).\BB')*BB2)',2) + sum((K_nu*(K_uu\(B'*L2))).^2, 2);
% if the prediction is made for training set, evaluate Lav also for prediction points
if ~isempty(tstind)
LavsW = Lav.*sqrt(W);
Varft(tstind) = Varft(tstind) - (LavsW./sqrt(Lahat)).^2 + sum((repmat(LavsW,1,m).*L2).^2, 2) ...
- 2.*sum((repmat(LavsW,1,m).*(repmat(Lahat,1,m).\B)).*(K_uu\K_nu(tstind,:)')',2)...
+ 2.*sum((repmat(LavsW,1,m).*L2).*(L2'*B*(K_uu\K_nu(tstind,:)'))' ,2);
end
end
case {'PIC' 'PIC_BLOCK'}
% ============================================================
% PIC
% ============================================================
% Predictions with PIC sparse approximation for GP
u = gp.X_u;
K_fu = gp_cov(gp, x, u, predcf); % f x u
K_uu = gp_trcov(gp, u, predcf); % u x u, noiseles covariance K_uu
K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu
K_nu=gp_cov(gp,xt,u,predcf);
ind = gp.tr_index;
ntest = size(xt,1);
m = size(u,1);
%[e, edata, eprior, f, L, a, La2] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[e, edata, eprior, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[f, La2] = deal(p.f, p.La2);
deriv = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
iKuuKuf = K_uu\K_fu';
w_bu=zeros(length(xt),length(u));
w_n=zeros(length(xt),1);
for i=1:length(ind)
w_bu(tstind{i},:) = repmat((iKuuKuf(:,ind{i})*deriv(ind{i},:))', length(tstind{i}),1);
K_nf = gp_cov(gp, xt(tstind{i},:), x(ind{i},:), predcf); % n x u
w_n(tstind{i},:) = K_nf*deriv(ind{i},:);
end
Eft = K_nu*(iKuuKuf*deriv) - sum(K_nu.*w_bu,2) + w_n;
% Evaluate the variance
if nargout > 1
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
kstarstar = gp_trvar(gp,xt,predcf);
sqrtW = sqrt(W);
% Components for (I + W^(1/2)*(Qff + La2)*W^(1/2))^(-1) = Lahat^(-1) - L2*L2'
for i=1:length(ind)
La{i} = diag(sqrtW(ind{i}))*La2{i}*diag(sqrtW(ind{i}));
Lahat{i} = eye(size(La{i})) + La{i};
end
B = (repmat(sqrt(W),1,m).*K_fu);
for i=1:length(ind)
B2(ind{i},:) = Lahat{i}\B(ind{i},:);
end
A2 = K_uu + B'*B2; A2=(A2+A2')/2;
L2 = B2/chol(A2);
iKuuB = K_uu\B';
KnfL2 = K_nu*(iKuuB*L2);
Varft = zeros(length(xt),1);
for i=1:length(ind)
v_n = gp_cov(gp, xt(tstind{i},:), x(ind{i},:),predcf).*repmat(sqrtW(ind{i},:)',length(tstind{i}),1); % n x u
v_bu = K_nu(tstind{i},:)*iKuuB(:,ind{i});
KnfLa = K_nu*(iKuuB(:,ind{i})/chol(Lahat{i}));
KnfLa(tstind{i},:) = KnfLa(tstind{i},:) - (v_bu + v_n)/chol(Lahat{i});
Varft = Varft + sum((KnfLa).^2,2);
KnfL2(tstind{i},:) = KnfL2(tstind{i},:) - v_bu*L2(ind{i},:) + v_n*L2(ind{i},:);
end
Varft = kstarstar - (Varft - sum((KnfL2).^2,2));
end
case 'CS+FIC'
% ============================================================
% CS+FIC
% ============================================================
% Predictions with CS+FIC sparse approximation for GP
% Here tstind = 1 if the prediction is made for the training set
if nargin > 6
if ~isempty(tstind) && length(tstind) ~= size(x,1)
error('tstind (if provided) has to be of same length as x.')
end
else
tstind = [];
end
n = size(x,1);
n2 = size(xt,1);
u = gp.X_u;
m = length(u);
%[e, edata, eprior, f, L, a, La2] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[e, edata, eprior, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[f, La2] = deal(p.f, p.La2);
% Indexes to all non-compact support and compact support covariances.
cf1 = [];
cf2 = [];
% Indexes to non-CS and CS covariances, which are used for predictions
predcf1 = [];
predcf2 = [];
ncf = length(gp.cf);
% Loop through all covariance functions
for i = 1:ncf
% Non-CS covariances
if ~isfield(gp.cf{i},'cs')
cf1 = [cf1 i];
% If used for prediction
if ~isempty(find(predcf==i))
predcf1 = [predcf1 i];
end
% CS-covariances
else
cf2 = [cf2 i];
% If used for prediction
if ~isempty(find(predcf==i))
predcf2 = [predcf2 i];
end
end
end
if isempty(predcf1) && isempty(predcf2)
predcf1 = cf1;
predcf2 = cf2;
end
% Determine the types of the covariance functions used
% in making the prediction.
if ~isempty(predcf1) && isempty(predcf2) % Only non-CS covariances
ptype = 1;
predcf2 = cf2;
elseif isempty(predcf1) && ~isempty(predcf2) % Only CS covariances
ptype = 2;
predcf1 = cf1;
else % Both non-CS and CS covariances
ptype = 3;
end
K_fu = gp_cov(gp,x,u,predcf1); % f x u
K_uu = gp_trcov(gp,u,predcf1); % u x u, noiseles covariance K_uu
K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu
K_nu=gp_cov(gp,xt,u,predcf1);
Kcs_nf = gp_cov(gp, xt, x, predcf2);
deriv = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
ntest=size(xt,1);
% Calculate the predictive mean according to the type of
% covariance functions used for making the prediction
if ptype == 1
Eft = K_nu*(K_uu\(K_fu'*deriv));
elseif ptype == 2
Eft = Kcs_nf*deriv;
else
Eft = K_nu*(K_uu\(K_fu'*deriv)) + Kcs_nf*deriv;
end
% evaluate also Lav if the prediction is made for training set
if ~isempty(tstind)
[Kv_ff, Cv_ff] = gp_trvar(gp, xt(tstind,:), predcf1);
Luu = chol(K_uu)';
B=Luu\(K_fu');
Qv_ff=sum(B.^2)';
%Lav = zeros(size(Eft));
%Lav(tstind) = Kv_ff-Qv_ff;
Lav = Kv_ff-Qv_ff;
end
% Add also Lav if the prediction is made for training set
% and non-CS covariance function is used for prediction
if ~isempty(tstind) && (ptype == 1 || ptype == 3)
Eft(tstind) = Eft(tstind) + Lav.*deriv;
end
% Evaluate the variance
if nargout > 1
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
sqrtW = sparse(1:tn,1:tn,sqrt(W),tn,tn);
kstarstar = gp_trvar(gp,xt,predcf);
Luu = chol(K_uu)';
Lahat = sparse(1:tn,1:tn,1,tn,tn) + sqrtW*La2*sqrtW;
B = sqrtW*K_fu;
% Components for (I + W^(1/2)*(Qff + La2)*W^(1/2))^(-1) = Lahat^(-1) - L2*L2'
B2 = Lahat\B;
A2 = K_uu + B'*B2; A2=(A2+A2')/2;
L2 = B2/chol(A2);
% Set params for K_nf
BB=Luu\(B)'; % sqrtW*K_fu
BB2=Luu\(K_nu');
m = amd(Lahat);
% Calculate the predictive variance according to the type
% covariance functions used for making the prediction
if ptype == 1 || ptype == 3
% FIC part of the covariance
Varft = kstarstar - sum(BB2'.*(BB*(Lahat\BB')*BB2)',2) + sum((K_nu*(K_uu\(B'*L2))).^2, 2);
% Add Lav to Kcs_nf if the prediction is made for the training set
if ~isempty(tstind)
% Non-CS covariance
if ptype == 1
Kcs_nf = sparse(tstind,1:n,Lav,n2,n);
% Non-CS and CS covariances
else
Kcs_nf = Kcs_nf + sparse(tstind,1:n,Lav,n2,n);
end
KcssW = Kcs_nf*sqrtW;
Varft = Varft - sum((KcssW(:,m)/chol(Lahat(m,m))).^2,2) + sum((KcssW*L2).^2, 2) ...
- 2.*sum((KcssW*(Lahat\B)).*(K_uu\K_nu')',2) + 2.*sum((KcssW*L2).*(L2'*B*(K_uu\K_nu'))' ,2);
% In case of both non-CS and CS prediction covariances add
% only Kcs_nf if the prediction is not done for the training set
elseif ptype == 3
KcssW = Kcs_nf*sqrtW;
Varft = Varft - sum((KcssW(:,m)/chol(Lahat(m,m))).^2,2) + sum((KcssW*L2).^2, 2) ...
- 2.*sum((KcssW*(Lahat\B)).*(K_uu\K_nu')',2) + 2.*sum((KcssW*L2).*(L2'*B*(K_uu\K_nu'))' ,2);
end
% Prediction with only CS covariance
elseif ptype == 2
KcssW = Kcs_nf*sqrtW;
Varft = kstarstar - sum((KcssW(:,m)/chol(Lahat(m,m))).^2,2) + sum((KcssW*L2).^2, 2);
end
end
case {'DTC' 'VAR' 'SOR'}
% ============================================================
% DTC, VAR, SOR
% ============================================================
% Predictions with DTC,VAR,SOR sparse approximation for GP
% Here tstind = 1 if the prediction is made for the training set
if nargin > 6
if ~isempty(tstind) && length(tstind) ~= size(x,1)
error('tstind (if provided) has to be of same length as x.')
end
else
tstind = [];
end
u = gp.X_u;
K_fu = gp_cov(gp, x, u, predcf); % f x u
K_uu = gp_trcov(gp, u, predcf); % u x u, noiseles covariance K_uu
K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu
Luu = chol(K_uu)';
m = size(u,1);
%[e, edata, eprior, f, L, a, La2] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[e, edata, eprior, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);
[f, L] = deal(p.f, p.L);
deriv = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
ntest=size(xt,1);
K_nu=gp_cov(gp,xt,u,predcf);
Eft = K_nu*(Luu'\(Luu\(K_fu'*deriv)));
% Evaluate the variance
if nargout > 1
% re-evaluate matrices with training components
Kfu_tr = gp_cov(gp, x, u);
Kuu_tr = gp_trcov(gp, u);
Kuu_tr = (Kuu_tr+Kuu_tr')./2;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
B = bsxfun(@times, sqrt(W), Kfu_tr);
% Components for (I + W^(1/2)*(Qff + La2)*W^(1/2))^(-1) = Lahat^(-1) - L2*L2'
% L = chol(Kuu_tr + Kfu_tr'*diag(W)*Kfu_tr)
L2 = B/L;
% Set params for K_nf
BB=Luu\(B');
BB2=Luu\(K_nu');
switch gp.type
case 'SOR'
% Varft = sum((K_nu'/Luu).^2,2)' - sum(BB2'.*(BB*(BB')*BB2)',2) + sum((K_nu*(K_uu\(B'*L2))).^2, 2);
Varft = sum(BB2.^2,1)' - sum(BB2'.*(BB*(BB')*BB2)',2) + sum((K_nu*(K_uu\(B'*L2))).^2, 2);
case {'VAR' 'DTC'}
kstarstar = gp_trvar(gp,xt,predcf);
Varft = kstarstar - sum(BB2'.*(BB*(BB')*BB2)',2) + sum((K_nu*(K_uu\(B'*L2))).^2, 2);
end
end
end
if ~isequal(fcorr, 'off')
% Do marginal corrections for samples
[pc_predm, fvecm] = gp_predcm(gp, x, y, xt, 'z', z, 'ind', 1:size(xt,1), 'fcorr', fcorr);
for i=1:size(xt,1)
% Remove NaNs and zeros
pc_pred=pc_predm(:,i);
dii=isnan(pc_pred)|pc_pred==0;
pc_pred(dii)=[];
fvec=fvecm(:,i);
fvec(dii)=[];
% Compute mean correction
Eft(i) = trapz(fvec.*(pc_pred./sum(pc_pred)));
end
end
% ============================================================
% Evaluate also the predictive mean and variance of new observation(s)
% ============================================================
if ~isequal(fcorr, 'off')
if nargout == 3
if isempty(yt)
lpyt=[];