-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_env.py
204 lines (172 loc) · 7.99 KB
/
test_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import argparse
import os
import numpy as np
import MADQN_config
import MAA2C_config
from MARL.MAA2C import MAA2C
from MARL.MADQN import MADQN
from MARL.common.utils import agg_stat_list
from on_ramp_env import OnRampEnv
from util.common_util import write_to_log, to_ndarray, INFINITY
def arg_parse():
# create an argument parser
parser = argparse.ArgumentParser(description="Zipper merge e1 runner.")
parser.add_argument('-m', "--model-dir", required=False, type=str,
help='Define the path to model.')
parser.add_argument('-O', "--rl-option", required=False, type=str, choices=["MADQN", "MAA2C"],
help='Define reinforcement learning option ["MADQN", "MAA2C"].')
parser.add_argument('-S', "--training-strategy", required=False, type=str, choices=["concurrent", "centralized"],
help='Define the training strategy ["concurrent", "centralized"].')
parser.add_argument(
'--sync-with-carla',
action='store_true',
help='run synchronization between SUMO and CARLA')
parser.add_argument(
'--show-gui',
action='store_true',
help='show SUMO gui')
opt = parser.parse_args()
return opt
def main():
opt = arg_parse()
rl_option = "MAA2C"
check_point = 99
outputs_dir = "./outputs/107"
eval_episodes = 100
test_dir = os.path.join(outputs_dir, "benchmark")
os.makedirs(test_dir, exist_ok=True)
env = OnRampEnv(exec_num=check_point)
if rl_option == "MAA2C":
rl = MAA2C(n_agents=env.n_agents, state_dim=env.n_state, action_dim=env.n_action,
memory_capacity=MAA2C_config.MEMORY_SIZE, batch_size=MAA2C_config.BATCH_SIZE,
reward_gamma=MAA2C_config.REWARD_DISCOUNTED_GAMMA,
actor_hidden_size=MAA2C_config.ACTOR_HIDDEN_SIZE, critic_hidden_size=MAA2C_config.CRITIC_HIDDEN_SIZE,
epsilon_start=MAA2C_config.EPSILON_START, epsilon_end=MAA2C_config.EPSILON_END,
epsilon_decay=MAA2C_config.EPSILON_DECAY,
optimizer_type=MAA2C_config.OPTIMIZER_TYPE, training_strategy=MAA2C_config.TRAINING_STRATEGY,
is_evaluation=True, outputs_dir=test_dir)
elif rl_option == "MADQN":
rl = MADQN(n_agents=env.n_agents, state_dim=env.n_state, action_dim=env.n_action,
memory_capacity=MADQN_config.MEMORY_SIZE, batch_size=MADQN_config.BATCH_SIZE,
target_update_freq=50, reward_gamma=MADQN_config.REWARD_DISCOUNTED_GAMMA,
actor_hidden_size=MADQN_config.ACTOR_HIDDEN_SIZE, critic_loss=MADQN_config.CRITIC_LOSS,
epsilon_start=MADQN_config.EPSILON_START, epsilon_end=MADQN_config.EPSILON_END,
epsilon_decay=MADQN_config.EPSILON_DECAY,
optimizer_type="rmsprop", training_strategy=MADQN_config.TRAINING_STRATEGY,
model_type=MADQN_config.MODEL_TYPE, outputs_dir=test_dir)
else:
raise ValueError("no valid rl option")
rl.load(directory=os.path.join(outputs_dir, "models"), check_point=check_point)
write_to_log(f"RL option: {rl_option}\n"
f"Agents: {env.n_agents}\n"
f"Actions:{env.n_action}\n"
f"Training episodes:{check_point * MAA2C_config.EVAL_INTERVAL}", output_dir=test_dir)
evaluation(env, rl, output_dir=test_dir,eval_episodes=eval_episodes)
write_to_log("END------------------------------------------", output_dir=test_dir)
def evaluation(env, rl, eval_episodes=100, output_dir="/logs", render=False):
avg_total_reward = []
avg_speed = []
avg_trip_delays = []
avg_headways = []
avg_ttcs = []
collisions_rate = []
for i in range(eval_episodes):
rewards = [[]] * env.n_agents
speeds = []
ttcs = []
headways = []
trip_time = []
global_reward = []
local_reward = []
states, _ = env.reset(show_gui=True)
eval_done = False
while not eval_done:
action = rl.act(env.normalize_state(states))
new_states, step_rewards, eval_done, info = env.step(action)
env.render(episode=i, output_dir=output_dir) if render else None
global_reward.append(info["global_rewards"])
local_reward.append(info["local_rewards"])
# env.render(eval_number)
for agent in range(0, env.n_agents):
rewards[agent].append(step_rewards[agent])
speeds.append(states[agent][2]) if states[agent][2] > 0 else None
ttcs.append(states[agent][6]) # if states[agent][6] < INFINITY else None
headways.append(states[agent][7]) # if states[agent][7] < INFINITY else None
trip_time.append(states[agent][8]) # if states[agent][7] < INFINITY else None
states = new_states
rl.tensorboard.step = i
env.close()
rewards_mu, rewards_std, _, _ = agg_stat_list(rewards)
glob_sum = np.sum(np.array(global_reward).flatten())
locl_avg = np.sum(np.mean(np.array(local_reward), axis=1))
rl.tensorboard.update_stats(
{
"reward_avg": rewards_mu,
"global_reward_sum": glob_sum,
"local_reward_avg": locl_avg,
"reward_std": rewards_std,
"speed_avg": np.mean(speeds),
"min_ttc": np.min(ttcs),
"headway": np.min(headways),
"trip_time": np.max(trip_time),
"collisions": len(env.collided_vehicles)
}
)
ttcs = np.array(ttcs)
ttcs = ttcs[ttcs < 1000]
avg_total_reward.append(rewards_mu)
avg_speed.append(np.mean(speeds))
avg_ttcs.append(np.min(ttcs)) if len(ttcs) != 0 else None
avg_headways.append(np.min(headways))
avg_trip_delays.append(np.max(trip_time))
collisions_rate.append(len(env.collided_vehicles))
write_to_log(f"avg total reward {np.mean(avg_total_reward)}\n"
f"avg speed {np.mean(avg_speed)}\n"
f"avg min ttc {np.mean(avg_ttcs)}\n"
f"avg min headway {np.mean(avg_headways)}\n"
f"avg min trip delay {np.mean(avg_trip_delays)}\n"
f"collisions rate {np.sum(collisions_rate)/ eval_episodes}\n", output_dir=output_dir)
def evaluate_policy_behavior(env, rl):
# rewards = [[]] * env.n_agents
# speeds = [[]] * env.n_agents
# ttcs = [[]] * env.n_agents
# headways = [[]] * env.n_agents
# trip_delays = [[]] * env.n_agents
states, _ = env.reset(show_gui=True)
eval_done = False
step = 0
while not eval_done:
action = rl.act(env.normalize_state(states))
new_states, step_rewards, eval_done, info = env.step(action)
# env.render(eval_number)
for agent in range(0, env.n_agents):
reward = step_rewards[agent]
speed = states[agent][2]
edge_id = states[agent][3]
ttc = states[agent][6] # if states[agent][6] < INFINITY else None
headway = states[agent][7] # if states[agent][7] < INFINITY else None
trip_delay = states[agent][8] # if states[agent][7] < INFINITY else None
rl.tensorboard.update_stats(
{
f"reward {agent}": reward,
f"edge_id {agent}": edge_id,
f"speed {agent}": speed,
f"ttc {agent}": ttc,
f"headway {agent}": headway,
f"trip delay {agent}": trip_delay,
}
)
# rewards[agent].append(reward)
# speeds[agent].append(speed) if speed > 0 else None
# ttcs[agent].append(ttc)
# headways[agent].append(headway)
# trip_delays[agent].append(trip_delay)
states = new_states
step += 1
rl.tensorboard.step = step
env.close()
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print(' - Exited by user.')