-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKalmanFilterOneLane.cpp
69 lines (52 loc) · 2.57 KB
/
KalmanFilterOneLane.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <iostream>
#include "KalmanFilterOneLane.hpp"
using namespace cv;
using namespace std;
// Constructor
KalmanFilterOneLane::KalmanFilterOneLane(vector<Vec2f> p){
kalmanOneLane = new KalmanFilter( 2, 2, 0 ); // 4 measurement and state parameters
kalmanOneLane->transitionMatrix = (Mat_<float>(2, 2) << 1,0, 0,1);
// Initialization
prevResultOneLane = p;
kalmanOneLane->statePre.at<float>(0) = p[0][0]; // r1
kalmanOneLane->statePre.at<float>(1) = p[0][1]; // theta1
// kalman->statePre.at<float>(2) = p[1][0]; // r2
// kalman->statePre.at<float>(3) = p[1][1]; // theta2
kalmanOneLane->statePost.at<float>(0)=p[0][0];
kalmanOneLane->statePost.at<float>(1)=p[0][1];
// kalman->statePost.at<float>(2)=p[1][0];
// kalman->statePost.at<float>(3)=p[1][1];
setIdentity(kalmanOneLane->measurementMatrix);
setIdentity(kalmanOneLane->processNoiseCov, Scalar::all(1e-4));
setIdentity(kalmanOneLane->measurementNoiseCov, Scalar::all(1e-1));
setIdentity(kalmanOneLane->errorCovPost, Scalar::all(5));
}
// Destructor
KalmanFilterOneLane::~KalmanFilterOneLane(){
delete kalmanOneLane;
}
// Prediction
vector<Vec2f> KalmanFilterOneLane::predictOneLane(){
Mat prediction = kalmanOneLane->predict(); // predict the state of the next frame
prevResultOneLane[0][0] = prediction.at<float>(0);prevResultOneLane[0][1] = prediction.at<float>(1);
// prevResult[1][0] = prediction.at<float>(2);prevResult[1][1] = prediction.at<float>(3);
return prevResultOneLane;
}
// Correct the prediction based on the measurement
vector<Vec2f> KalmanFilterOneLane::updateOneLane(vector<Vec2f> measure){
Mat_<float> measurement(2,1);
measurement.setTo(Scalar(0));
measurement.at<float>(0) = measure[0][0];measurement.at<float>(1) = measure[0][1];
// measurement.at<float>(2) = measure[1][0];measurement.at<float>(3) = measure[1][1];
Mat estimated = kalmanOneLane->correct(measurement); // Correct the state of the next frame after obtaining the measurements
// Update the measurement
if(estimated.at<float>(0) < estimated.at<float>(2)){
measure[0][0] = estimated.at<float>(0);measure[0][1] = estimated.at<float>(1);
// measure[1][0] = estimated.at<float>(2);measure[1][1] = estimated.at<float>(3);
}
else{
measure[0][0] = estimated.at<float>(2);measure[0][1] = estimated.at<float>(3);
// measure[1][0] = estimated.at<float>(0);measure[1][1] = estimated.at<float>(1);
}
return measure; // return the measurement
}