-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstn_dataset.py
73 lines (59 loc) · 2.34 KB
/
stn_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import glob
import os
import pathlib
import cv2
import numpy as np
from torch.utils.data import Dataset
class STNDataset(Dataset):
def __init__(self, root, dataset_type="train", gamma=1.5, transform=None, target_transform=None):
self.root = pathlib.Path(root)
self.transform = transform
self.target_transform = target_transform
self.dataset_type = dataset_type.lower()
self.data = self._read_data()
self.min_image_num = -1
self.gamma = gamma
self.class_stat = None
def _getitem(self, index):
image_info = self.data[index]
x_image = self._read_image(image_info['x_train'])
y_image = self._read_image(image_info['y_train'])
if self.transform:
x_image = self.transform(x_image)
if self.target_transform:
y_image = self.transform(y_image)
return x_image, y_image
def __getitem__(self, index):
x_image, y_image = self._getitem(index)
return x_image, y_image
def _read_data(self):
x_train = glob.glob(str(self.root) + '/' + self.dataset_type + '/*.jpg')
data = []
for f in x_train:
data.append({
'x_train': os.path.basename(f),
'y_train': str(os.path.basename(f.rstrip('.jpg') + '-syn.png'))
})
return data
def __len__(self):
return len(self.data)
def __repr__(self):
content = ["Dataset Summary:"
f"Number of Images: {len(self.data)}",
f"Minimum Number of Images for a Class: {self.min_image_num}"]
return "\n".join(content)
def _adjust_gamma(self, image):
# build a lookup table mapping the pixel values [0, 255] to their adjusted gamma values
invGamma = 1.0 / self.gamma
table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
return cv2.LUT(image, table)
def _read_image(self, image_id):
image_file = self.root / self.dataset_type / image_id
image = cv2.imread(str(image_file))
image = self._adjust_gamma(image)
if image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image