forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
378 lines (309 loc) · 14.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import numpy as np
import cv2
import glob
import pickle
import os
def gaussian_blur(img, kernel_size):
"""Applies a Gaussian Noise kernel"""
return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
def abs_sobel_thresh(img, orient='x', thresh=(20, 255)):
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Apply x or y gradient with the OpenCV Sobel() function
# and take the absolute value
if orient == 'x':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0))
if orient == 'y':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1))
# Rescale back to 8 bit integer
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
# Create a copy and apply the threshold
binary_output = np.zeros_like(scaled_sobel)
# Here I'm using inclusive (>=, <=) thresholds, but exclusive is ok too
binary_output[(scaled_sobel >= thresh[0]) &
(scaled_sobel <= thresh[1])] = 1
# Return the result
return binary_output
# Define a function to return the magnitude of the gradient
# for a given sobel kernel size and threshold values
def mag_thresh(img, sobel_kernel=3, thresh=(0, 255)):
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Take both Sobel x and y gradients
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# Calculate the gradient magnitude
gradmag = np.sqrt(sobelx**2 + sobely**2)
# Rescale to 8 bit
scale_factor = np.max(gradmag) / 255
gradmag = (gradmag / scale_factor).astype(np.uint8)
# Create a binary image of ones where threshold is met, zeros otherwise
binary_output = np.zeros_like(gradmag)
binary_output[(gradmag >= thresh[0]) & (gradmag <= thresh[1])] = 1
# Return the binary image
return binary_output
# Define a function to threshold an image for a given range and Sobel kernel
def dir_thresh(img, sobel_kernel=3, thresh=(0, np.pi / 2)):
# Grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Calculate the x and y gradients
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# Take the absolute value of the gradient direction,
# apply a threshold, and create a binary image result
absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx))
binary_output = np.zeros_like(absgraddir)
binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
# Return the binary image
return binary_output
# Define a function that thresholds the S-channel of HLS
def hls_select(img, thresh=(90, 255)):
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:, :, 2]
binary_output = np.zeros_like(s_channel)
binary_output[(s_channel > thresh[0]) & (s_channel <= thresh[1])] = 1
return binary_output
# X,Y
img_size = (1280, 720)
# MMa 2017-06-27 Why it failed immediately when top source points are less then half of the height ??!
src = np.float32([[img_size[0] / 2 - 116, img_size[1] / 2 + 150],
[img_size[0] / 2 + 116, img_size[1] / 2 + 150],
[img_size[0] / 2 + 320, img_size[1]],
[img_size[0] / 2 - 320, img_size[1]]])
offset_x = 300 # offset for dst points
offset_y = 400
dst = np.float32([[offset_x, offset_y],
[img_size[0] - offset_x, offset_y],
[img_size[0] - offset_x, img_size[1]],
[offset_x, img_size[1]]])
M = cv2.getPerspectiveTransform(src, dst)
M_inv = cv2.getPerspectiveTransform(dst, src)
def binary_warp(img, mtx, dist):
hls_binary = hls_select(img, thresh=(50, 255))
img_new = cv2.undistort(hls_binary, mtx, dist, None, mtx)
warped = cv2.warpPerspective(img_new, M, img_size, flags=cv2.INTER_LINEAR)
return warped
def poly_fit(img):
histogram = np.sum(img[int(img.shape[0] / 2):, :], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((img, img, img)) * 255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0] / 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# print("left base {},right base {}".format(leftx_base,rightx_base))
# Choose the number of sliding windows
nwindows = 10
# Set height of windows
window_height = np.int(img.shape[0] / nwindows)
# print("Using window height {}".format(window_height))
# Identify the x and y positions of all nonzero pixels in the image
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = img.shape[0] - (window + 1) * window_height
win_y_high = img.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low),
(win_xleft_high, win_y_high), (0, 255, 0), 3)
cv2.rectangle(out_img, (win_xright_low, win_y_low),
(win_xright_high, win_y_high), (0, 255, 0), 3)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit, right_fit = None, None
if lefty.any() and leftx.any():
left_fit = np.polyfit(lefty, leftx, 2)
if righty.any() and rightx.any():
right_fit = np.polyfit(righty, rightx, 2)
# print(left_fit)
# print(right_fit)
return left_fit, right_fit
# def poly_fit(img,left_fit,right_fit):
# # Assume you now have a new warped binary image
# # from the next frame of video (also called "binary_warped")
# # It's now much easier to find line pixels!
# nonzero = binary_warped.nonzero()
# nonzeroy = np.array(nonzero[0])
# nonzerox = np.array(nonzero[1])
# margin = 100
# left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) &
# (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin)))
# right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) &
# (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin)))
# # Again, extract left and right line pixel positions
# leftx = nonzerox[left_lane_inds]
# lefty = nonzeroy[left_lane_inds]
# rightx = nonzerox[right_lane_inds]
# righty = nonzeroy[right_lane_inds]
# # Fit a second order polynomial to each
# left_fit = np.polyfit(lefty, leftx, 2)
# right_fit = np.polyfit(righty, rightx, 2)
# return left_fitx, right_fit
def curvature(ploty, leftx, rightx):
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30 / 720 # meters per pixel in y dimension
xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
# Define y-value where we want radius of curvature
# I'll choose the maximum y-value, corresponding to the bottom of the image
y_eval = np.max(ploty)
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty * ym_per_pix, leftx * xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty * ym_per_pix, rightx * xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix +
left_fit_cr[1])**2)**1.5) / np.absolute(2 * left_fit_cr[0])
right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix +
right_fit_cr[1])**2)**1.5) / np.absolute(2 * right_fit_cr[0])
# Now our radius of curvature is in meters
# print(left_curverad, 'm', right_curverad, 'm')
# print(left_fit_cr[0]*y_eval*ym_per_pix, 'm', right_fit_cr[0]*y_eval*ym_per_pix, 'm')
return left_curverad, right_curverad
def draw_lane(img, ploty, left_fitx, right_fitx):
img_new = img.copy()
# Create an image to draw the lines on
warp_zero = np.zeros_like(img).astype(np.uint8)
color_warp = warp_zero # np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array(
[np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(
color_warp, M_inv, (img.shape[1], img.shape[0]))
# Combine the result with the original image
img_new = cv2.addWeighted(img_new, 1, newwarp, 0.3, 0)
return img_new
def draw_info(img, curv, center_dist):
img_new = np.copy(img)
h = img_new.shape[0]
font = cv2.FONT_HERSHEY_SIMPLEX
text = 'Curvature : {:4.2f}'.format(curv) + 'm'
cv2.putText(img_new, text, (40, 70), font, 1,
(255, 255, 255), 2, cv2.LINE_AA)
direction = ''
if center_dist > 0:
direction = 'right'
elif center_dist < 0:
direction = 'left'
abs_center_dist = abs(center_dist)
text = '{:4.3f}'.format(abs_center_dist) + 'm ' + direction + ' of center'
cv2.putText(img_new, text, (40, 120), font, 1,
(255, 255, 255), 2, cv2.LINE_AA)
return img_new
def pipeline(img):
undistort = cv2.undistort(img, mtx, dist, None, mtx)
hls_binary = hls_select(undistort, thresh=(100, 255))
warped = cv2.warpPerspective(
hls_binary, M, img_size, flags=cv2.INTER_LINEAR)
left_fit, right_fit = poly_fit(warped)
if left_fit == None or right_fit == None:
return img
# Generate x and y values for plotting
ploty = np.linspace(0, img.shape[0] - 1, img.shape[0])
left_fitx = left_fit[0] * ploty**2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty**2 + right_fit[1] * ploty + right_fit[2]
curv_left, curv_right = curvature(ploty, left_fitx, right_fitx)
result = draw_lane(undistort, ploty, left_fitx, right_fitx)
result = draw_info(result, (curv_left + curv_right) / 2, 0)
return result
def poly_fit_update(img, left_fit, right_fit):
# Choose the number of sliding windows
nwindows = 10
# Set height of windows
window_height = np.int(img.shape[0] / nwindows)
# print("Using window height {}".format(window_height))
# Identify the x and y positions of all nonzero pixels in the image
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = np.int(left_fit[2])
rightx_current = np.int(right_fit[2])
# Set the width of the windows +/- margin
margin = 50
# Set minimum number of pixels found to recenter window
minpix = 25
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
poly_y = (window + 1) * window_height
# Identify window boundaries in x and y (and right and left)
win_y_low = img.shape[0] - (window + 1) * window_height
win_y_high = img.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(
left_fit[0] * poly_y**2 + left_fit[1] * poly_y + left_fit[2])
if len(good_right_inds) > minpix:
rightx_current = np.int(
right_fit[0] * poly_y**2 + right_fit[1] * poly_y + right_fit[2])
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit, right_fit = None, None
if lefty.any() and leftx.any():
left_fit = np.polyfit(lefty, leftx, 2)
if righty.any() and rightx.any():
right_fit = np.polyfit(righty, rightx, 2)
return left_fit, right_fit