-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
199 lines (160 loc) · 7.25 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import pickle
import argparse
import yaml
import torch
import os
import torch.nn as nn
import pdb
import json
from torch.utils.data import DataLoader
from data import ClassificationDataset
from models import KimCNN
def get_dataloader(args):
train_data_path = config['train_data_path']
valid_data_path = config['valid_data_path']
test_data_path = config['test_data_path']
train_data = pickle.load(open(train_data_path, 'rb'))
valid_data = pickle.load(open(valid_data_path, 'rb'))
test_data = pickle.load(open(test_data_path, 'rb'))
train_dataset = ClassificationDataset(train_data)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valid_dataset = ClassificationDataset(valid_data)
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False)
test_dataset = ClassificationDataset(test_data)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
return train_dataloader, valid_dataloader, test_dataloader
def make_model(args):
if args.model == 'kim_cnn':
return KimCNN(args)
else:
raise NotImplementedError("unkown model type {}".format(args.model))
def get_opt(args, model):
if args.optim == 'adam':
return torch.optim.Adam(model.parameters(), lr=args.lr)
else:
return NotImplementedError("unknown optimizer {}".format(args.optim))
def normalize_weight(weight_tensor):
norm = torch.norm(weight_tensor)
if norm > args.max_l2_norm:
weight_tensor.div_(norm/args.max_l2_norm)
def get_loss(criterion, out, labels):
loss = criterion(out, labels)
return loss
def get_accuracy(out, labels):
_, preds = torch.max(out, 1)
correct = (preds == labels).sum().item()
return correct / labels.shape[0], correct
def train_epoch(train_dataloader, model, criterion, optimizer, epoch):
model.train()
total_loss = 0
total_correct = 0
for i_batch, sample_batch in enumerate(train_dataloader):
sentences = sample_batch['sentences'] # bs X sl
lengths = sample_batch['lengths']
labels = sample_batch['labels']
if args.cuda:
sentences = sentences.cuda()
labels = labels.cuda()
out = model.forward(sentences)
loss = get_loss(criterion, out, labels)
loss.backward()
acc, ncorrect = get_accuracy(out, labels)
total_loss += loss.item()
total_correct += ncorrect
optimizer.step()
normalize_weight(model.output_layer.weight.data)
optimizer.zero_grad()
if i_batch > 0 and i_batch % args.batch_print == 0:
print("batch ", i_batch, "loss ", loss.item(), "batch acc: ", acc)
acc = total_correct / len(train_dataloader.dataset)
print(f"train epoch: {epoch} \
train loss: {total_loss:.4f} \
train accuracy: {acc:.4f}")
return total_loss, acc
def valid_epoch(valid_dataloader, model, criterion, epoch):
model.eval()
total_loss = 0
total_correct = 0
for i_batch, sample_batch in enumerate(valid_dataloader):
sentences = sample_batch['sentences'] # bs X sl
lengths = sample_batch['lengths']
labels = sample_batch['labels']
if args.cuda:
sentences = sentences.cuda()
labels = labels.cuda()
out = model.forward(sentences)
loss = get_loss(criterion, out, labels)
acc, ncorrect = get_accuracy(out, labels)
total_loss += loss.item()
total_correct += ncorrect
acc = total_correct / len(valid_dataloader.dataset)
print(f"valid epoch: {epoch} \
valid loss: {total_loss:.4f} \
valid accuracy: {acc:.4f}")
return total_loss, acc
def write_results(dataloader, trained_model, out_file):
trained_model.eval()
all_preds = []
lbl2id = json.load(open(config['vocab_labels_path']))
id2lbl = {id: lbl.lower() for lbl, id in lbl2id.items()}
for i_batch, sample_batch in enumerate(valid_dataloader):
sentences = sample_batch['sentences'] # bs X sl
lengths = sample_batch['lengths']
labels = sample_batch['labels']
if args.cuda:
sentences = sentences.cuda()
labels = labels.cuda()
out = trained_model.forward(sentences)
_, preds = torch.max(out, 1)
preds = preds.tolist()
all_preds += preds
results = [id2lbl[id] for id in all_preds]
with open(out_file, 'w') as f:
f.write("\n".join(results))
def save_model(model, model_path):
torch.save(model.state_dict(), model_path)
def load_model(model_path, model):
model.load_state_dict(torch.load(model_path))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-test", action='store_true', help="Run trained model on test data")
parser.add_argument("-batch_size", type=int, default=50, help="")
parser.add_argument("-model", default="kim_cnn", help="model to use: kim_cnn")
parser.add_argument("-filter_heights", default="3,4,5", help="heights of filters")
parser.add_argument("-num_filters", type=int, default=100, help="number of filters of each height")
parser.add_argument("-num_labels", type=int, default=16, help="number of labels in the dataset")
parser.add_argument("-optim", default="adam", help="optimizer to use: adam")
parser.add_argument("-lr", type=float, default=0.01, help="learning rate")
parser.add_argument("-batch_print", type=int, default=20000, help="print status of batch after these many batches")
parser.add_argument("-drop_prob", type=float, default=0.5, help="probability to drop")
parser.add_argument("-epochs", type=int, default=10, help="number of epochs to train for")
parser.add_argument("-max_l2_norm", type=float, default=3.0, help="normalize output layer weights to this value")
parser.add_argument("-cuda", action='store_true', help="train model on gpu")
parser.add_argument("-use_fixed_embed", action='store_true', help="use both fixed embedding")
parser.add_argument("-use_trainable_embed", action='store_true', help="use both trainable embedding")
parser.add_argument("-gpu", default="0", help="which gpu to use")
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
config = yaml.safe_load(open("config.yml"))
args.vocab_embed_path = config['vocab_embed_path']
train_dataloader, valid_dataloader, test_dataloader = get_dataloader(args)
criterion = nn.CrossEntropyLoss()
model = make_model(args)
model_path = "best_model"
if args.cuda:
model.cuda()
optimizer = get_opt(args, model)
best_valid_acc = 0
for epoch in range(args.epochs):
train_loss, train_acc = train_epoch(train_dataloader, model, criterion, optimizer, epoch)
valid_loss, valid_acc = valid_epoch(valid_dataloader, model, criterion, epoch)
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
if args.test:
save_model(model, model_path)
print(f"best valid acc: {best_valid_acc:.4f}")
if args.test:
load_model(model_path, model)
write_results(test_dataloader, model, "tests_results.txt")
write_results(valid_dataloader, model, "valid_results.txt")