-
Notifications
You must be signed in to change notification settings - Fork 0
/
blob3.py
executable file
·99 lines (78 loc) · 3.8 KB
/
blob3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# Derived from http://sundararajana.blogspot.com/2007/05/motion-detection-using-opencv.html
import cv
class Target:
def __init__(self):
self.capture = cv.CaptureFromCAM(0)
cv.NamedWindow("Target", 1)
cv.SetCaptureProperty(self.capture,cv.CV_CAP_PROP_FRAME_WIDTH,320)
cv.SetCaptureProperty(self.capture,cv.CV_CAP_PROP_FRAME_HEIGHT,240)
def run(self):
# Capture first frame to get size
frame = cv.QueryFrame(self.capture)
frame_size = cv.GetSize(frame)
grey_image = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
moving_average = cv.CreateImage(frame_size, cv.IPL_DEPTH_32F, 3)
difference = None
while True:
# Capture frame from webcam
color_image = cv.QueryFrame(self.capture)
# Smooth to get rid of false positives
cv.Smooth(color_image, color_image, cv.CV_GAUSSIAN, 3, 0)
if not difference:
# Initialize
difference = cv.CloneImage(color_image)
temp = cv.CloneImage(color_image)
cv.ConvertScale(color_image, moving_average, 1.0, 0.0)
else:
cv.RunningAvg(color_image, moving_average, 0.020, None)
# Convert the scale of the moving average.
cv.ConvertScale(moving_average, temp, 1.0, 0.0)
# Minus the current frame from the moving average.
cv.AbsDiff(color_image, temp, difference)
# Convert the image to grayscale.
cv.CvtColor(difference, grey_image, cv.CV_RGB2GRAY)
# Convert the image to black and white.
cv.Threshold(grey_image, grey_image, 70, 255, cv.CV_THRESH_BINARY)
# Dilate and erode to get object blobs
cv.Dilate(grey_image, grey_image, None, 18)
cv.Erode(grey_image, grey_image, None, 40)
# Calculate movements
storage = cv.CreateMemStorage(0)
contour = cv.FindContours(grey_image, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
points = []
while contour:
levels = 0
cv.DrawContours(color_image, contour, cv.CV_RGB(255,0,0), cv.CV_RGB(0,255,0), levels, 3, 0, (0,0))
# Draw rectangles
bound_rect = cv.BoundingRect(list(contour))
contour = contour.h_next()
pt1 = (bound_rect[0], bound_rect[1])
pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])
points.append(pt1)
points.append(pt2)
cv.Rectangle(color_image, pt1, pt2, cv.CV_RGB(255,0,0), 1)
num_points = len(points)
if num_points:
# Draw bullseye in midpoint of all movements
x = y = 0
for point in points:
x += point[0]
y += point[1]
x /= num_points
y /= num_points
center_point = (x, y)
print '%d %d' % (x, y)
cv.Circle(color_image, center_point, 40, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 30, cv.CV_RGB(255, 100, 0), 1)
cv.Circle(color_image, center_point, 20, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 10, cv.CV_RGB(255, 100, 0), 5)
# Display frame to user
cv.ShowImage("Target", color_image)
# Listen for ESC or ENTER key
c = cv.WaitKey(7) % 0x100
if c == 27 or c == 10:
break
if __name__=="__main__":
t = Target()
t.run()