-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtrain_proto.py
140 lines (116 loc) · 4.65 KB
/
train_proto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/bin/python3.6
"""
Date Created: Apr 6 2020
Training script for prototypical networks
"""
import os
import sys
import glob
import time
import socket
import torch
import numpy as np
from train_utils import *
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from torch.nn.functional import softmax
def euclideanLoss(embed_quer, prototypes):
"""
prototypes: (N, D)
embed_quer: (M, N, D)
D: embedding dimension
N: number of classes
M: samples per class
"""
M, N, D = embed_quer.shape
embed_quer = embed_quer.unsqueeze(2).expand(-1, -1, N, -1)
prototypes = prototypes.view(1, 1, N, D).expand(M, N, -1, -1)
logits = ((embed_quer - prototypes)**2).sum(dim=3)
return -logits
# SEEDS
torch.manual_seed(0)
np.random.seed(0)
# PARAMS, MODEL PREP
parser = getParams()
args = parser.parse_args()
checkParams(args)
print(args)
totalEpisodes = args.totalEpisodes
net, optimizer, episodeI, saveDir = prepareProtoModel(args)
currLR = optimizer.param_groups[0]['lr']
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
numBatchesPerArk = int(args.numEgsPerArk/args.batchSize)
# LR SCHEDULERS
cyclic_lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
max_lr=args.maxLR,
cycle_momentum=False,
div_factor=5,
final_div_factor=1e+3,
total_steps=totalEpisodes,
pct_start=0.15)
exponential_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,
gamma=0.95)
criterion = nn.CrossEntropyLoss()
optimizer.param_groups[0]['lr'] = currLR
eps = args.noiseEps
featDir = args.featDir
# TRAINING
while episodeI < totalEpisodes:
hdf5File = np.random.choice(glob.glob(featDir+'/*.hdf5'))
print('Reading from archive %s' %os.path.basename(hdf5File))
dataSet = myH5DL(hdf5File)
samplesPerClass = np.random.randint(3,4)
numSupports = samplesPerClass - 1
numQueries = 1
batchSampler = myH5DL_sampler(hdf5File,
minClasses=args.protoMinClasses,
maxClasses=args.protoMaxClasses,
samplesPerClass=samplesPerClass,
numEpisodes=args.protoEpisodesPerArk)
dataLoader = DataLoader(dataSet, batch_sampler=batchSampler, num_workers=0)
loggingLoss = []
archive_start_time = time.time()
for x, _ in dataLoader:
optimizer.zero_grad()
episode_start_time = time.time()
numClasses = int(len(x)/samplesPerClass)
x = x.view(samplesPerClass, numClasses, -1, args.featDim)
supports = x[:numSupports,:,:,:].detach()
queries = x[numSupports:,:,:,:].detach()
labels = torch.arange(numClasses).repeat(numQueries)
embed_sup = net(
supports.view(-1, supports.shape[2], args.featDim).permute(0,2,1).to(device), eps)
embed_quer = net(
queries.view(-1, queries.shape[2], args.featDim).permute(0,2,1).to(device), eps)
# Prototype computation
prototypes = embed_sup.view(supports.shape[0], supports.shape[1], -1).mean(dim=0)
# Euclidean-softmax
logits = euclideanLoss(embed_quer.view(queries.shape[0], queries.shape[1], -1), prototypes)
# Original implementation of loss function
loss = criterion(logits.view(numQueries*numClasses,numClasses), labels.to(device))
# print(loss.item())
loggingLoss.append(loss.item())
loss.backward()
optimizer.step()
print('Episode time: %1.3f Episode Loss: %1.3f' %(time.time()-episode_start_time, loss.item()))
del x, supports, queries, embed_sup, embed_quer, loss, logits, prototypes
episodeI += 1
if episodeI%(10*args.protoEpisodesPerArk) == 0:
exponential_lr_scheduler.step()
# Log, as long as episodeI <= totalEpisodes
print('Episode: (%d/%d) Avg Loss/batch: %1.3f' %(
episodeI,
totalEpisodes,
np.mean(loggingLoss)))
print('Archive time: %1.3f' %(time.time()-archive_start_time))
# Save checkpoint
torch.save({
'episodeI': episodeI,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'args': args,
}, '{}/checkpoint_episode_{}.tar'.format(saveDir, episodeI))
if episodeI > 10*args.protoEpisodesPerArk:
if os.path.exists('%s/checkpoint_step_%d.tar' %(saveDir,episodeI-10*args.protoEpisodesPerArk)):
if episodeI%(50*args.protoEpisodesPerArk) !=0:
os.remove('%s/checkpoint_step_%d.tar' %(saveDir,episodeI-10*args.protoEpisodesPerArk))