-
Notifications
You must be signed in to change notification settings - Fork 5
/
meanshift_object_tracking_opencv.py
46 lines (33 loc) · 1.24 KB
/
meanshift_object_tracking_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import cv2
import numpy as np
cap = cv2.VideoCapture('test_images/slow_traffic_small.mp4')
# read first frame
ret, frame = cap.read()
# initial location
x, y, width, height = 300, 200, 100, 50
tracked_window = (x,y,width,height)
# ROI
roi = frame[y:y+height , x:x+width]
hsv_roi = cv2.cvtColor(roi , cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi , np.array((0.,60.,32.)) , np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi] , [0] ,mask ,[180],[0,180] )
cv2.normalize(roi_hist , roi_hist , 0,255, cv2.NORM_MINMAX)
# setup termination criteria
term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT , 10, 1)
# cv2.imshow('roi' , roi)
while True:
ret, frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame , cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv] , [0] , roi_hist , [0,180] , 1)
# mean shift
ret ,track_window = cv2.meanShift(dst , tracked_window , term_crit)
# draw it on image
x,y,w,h = track_window
final_image = cv2.rectangle(frame , (x,y) , (x+w,y+h) , (0,0,255) , 3)
# cv2.imshow('dst' , dst)
cv2.imshow('final_image' , final_image)
if cv2.waitKey(30) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()