-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
82 lines (59 loc) · 2.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from model import WaveRNN
import torch
from torch.autograd import Variable
import numpy as np
import time
from torch import optim
import torch.nn.functional as F
import sys
from hparam import Hyperparams as hp
from utils import split_signal
import math
def sine_wave(freq, length, sample_rate=hp.sr):
return np.sin(np.arange(length) * 2 * math.pi * freq / sample_rate).astype(np.float32)
model = WaveRNN().cuda()
x = sine_wave(freq=500, length=hp.sr * 30)
def input_split():
coarse_classes, fine_classes = split_signal(x)
coarse_classes = np.reshape(coarse_classes, (1, -1))
fine_classes = np.reshape(fine_classes, (1, -1))
return coarse_classes, fine_classes
coarse_classes, fine_classes = input_split()
def train(model, optimizer, coarse_classes, fine_classes,num_steps, seq_len=960):
start = time.time()
running_loss = 0
for step in range(num_steps):
optimizer.zero_grad()
loss = wavernn_loss(model, coarse_classes, fine_classes, seq_len)
running_loss += (loss.data[0] / seq_len)
loss.backward()
optimizer.step()
speed = (step + 1) / (time.time() - start)
sys.stdout.write('\rStep: %i/%i --- NLL: %.2f --- Speed: %.3f batches/second ' %
(step + 1, num_steps, running_loss / (step + 1), speed))
def wavernn_loss(model, coarse_classes, fine_classes, seq_len):
loss = 0
hidden = model.init_hidden()
rand_idx = np.random.randint(0, coarse_classes.shape[1] - seq_len - 1)
for i in range(seq_len):
j = rand_idx + i
x_coarse = coarse_classes[:, j:j + 1]
x_fine = fine_classes[:, j:j + 1]
x_input = np.concatenate([x_coarse, x_fine], axis=1)
x_input = x_input / 127.5 - 1.
x_input = Variable(torch.FloatTensor(x_input)).cuda()
y_coarse = coarse_classes[:, j + 1]
y_fine = fine_classes[:, j + 1]
y_coarse = Variable(torch.LongTensor(y_coarse)).cuda()
y_fine = Variable(torch.LongTensor(y_fine)).cuda()
current_coarse = y_coarse.float() / 127.5 - 1.
current_coarse = current_coarse.unsqueeze(-1)
out_coarse, out_fine, hidden = model(x_input, hidden, current_coarse)
loss_coarse = F.cross_entropy(out_coarse, y_coarse)
loss_fine = F.cross_entropy(out_fine, y_fine)
loss += (loss_coarse + loss_fine)
return loss
optimizer = optim.Adam(model.parameters(), lr=1e-3)
train(model, optimizer, coarse_classes, fine_classes, num_steps=500)