Skip to content

Latest commit

 

History

History
258 lines (187 loc) · 6.9 KB

README.md

File metadata and controls

258 lines (187 loc) · 6.9 KB

DeepLearnToolbox

A Matlab toolbox for Deep Learning.

Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is Learning Deep Architectures for AI

For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng.

If you use this toolbox in your research please cite Prediction as a candidate for learning deep hierarchical models of data

@MASTERSTHESIS\{IMM2012-06284,
    author       = "R. B. Palm",
    title        = "Prediction as a candidate for learning deep hierarchical models of data",
    year         = "2012",
}

Directories included in the toolbox

NN/ - A library for Feedforward Backpropagation Neural Networks

CNN/ - A library for Convolutional Neural Networks

DBN/ - A library for Deep Belief Networks

SAE/ - A library for Stacked Auto-Encoders

CAE/ - A library for Convolutional Auto-Encoders

util/ - Utility functions used by the libraries

data/ - Data used by the examples

tests/ - unit tests to verify toolbox is working

For references on each library check REFS.md

Setup

  1. Download.
  2. addpath(genpath('DeepLearnToolbox'));

Everything is work in progress

Example: Deep Belief Network

function test_example_DBN
load mnist_uint8;

train_x = double(train_x) / 255;
test_x  = double(test_x)  / 255;
train_y = double(train_y);
test_y  = double(test_y);

%%  ex1 train a 100 hidden unit RBM and visualize its weights
rng(0);
dbn.sizes = [100];
opts.numepochs =   1;
opts.batchsize = 100;
opts.momentum  =   0;
opts.alpha     =   1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
figure; visualize(dbn.rbm{1}.W');   %  Visualize the RBM weights

%%  ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN
rng(0);
%train dbn
dbn.sizes = [100 100];
opts.numepochs =   1;
opts.batchsize = 100;
opts.momentum  =   0;
opts.alpha     =   1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);

%unfold dbn to nn
nn = dbnunfoldtonn(dbn, 10);
nn.normalize_input = 0;
nn.activation_function = 'sigm';

%train nn
opts.numepochs =  1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);

assert(er < 0.10, 'Too big error');

Example: Stacked Auto-Encoders

function test_example_SAE
load mnist_uint8;

train_x = double(train_x)/255;
test_x  = double(test_x)/255;
train_y = double(train_y);
test_y  = double(test_y);

%%  ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN
%  Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
sae = saesetup([784 100]);
sae.ae{1}.normalize_input           = 0;
sae.ae{1}.activation_function       = 'sigm';
sae.ae{1}.learningRate              = 1;
sae.ae{1}.inputZeroMaskedFraction   = 0.5;
opts.numepochs =   1;
opts.batchsize = 100;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')

% Use the SDAE to initialize a FFNN
nn = nnsetup([784 100 10]);
nn.normalize_input                  = 0;
nn.activation_function              = 'sigm';
nn.learningRate                     = 1;
nn.W{1} = sae.ae{1}.W{1};

% Train the FFNN
opts.numepochs =   1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.16, 'Too big error');

Example: Convolutional Neural Nets

function test_example_CNN
load mnist_uint8;

train_x = double(reshape(train_x',28,28,60000))/255;
test_x = double(reshape(test_x',28,28,10000))/255;
train_y = double(train_y');
test_y = double(test_y');

%% ex1 Train a 6c-2s-12c-2s Convolutional neural network 
%will run 1 epoch in about 200 second and get around 11% error. 
%With 100 epochs you'll get around 1.2% error
rng(0)
cnn.layers = {
    struct('type', 'i') %input layer
    struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer
    struct('type', 's', 'scale', 2) %sub sampling layer
    struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer
    struct('type', 's', 'scale', 2) %subsampling layer
};
cnn = cnnsetup(cnn, train_x, train_y);

opts.alpha = 1;
opts.batchsize = 50;
opts.numepochs = 1;

cnn = cnntrain(cnn, train_x, train_y, opts);

[er, bad] = cnntest(cnn, test_x, test_y);

%plot mean squared error
figure; plot(cnn.rL);

assert(er<0.12, 'Too big error');

Example: Neural Networks

function test_example_NN
load mnist_uint8;

train_x = double(train_x) / 255;
test_x  = double(test_x)  / 255;
train_y = double(train_y);
test_y  = double(test_y);

%% ex1 vanilla neural net
rng(0);
nn = nnsetup([784 100 10]);
opts.numepochs =  1;   %  Number of full sweeps through data
opts.batchsize = 100;  %  Take a mean gradient step over this many samples
[nn, L] = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);

assert(er < 0.08, 'Too big error');


%% ex2 neural net with L2 weight decay
rng(0);
nn = nnsetup([784 100 10]);

nn.weightPenaltyL2 = 1e-4;  %  L2 weight decay
opts.numepochs =  1;        %  Number of full sweeps through data
opts.batchsize = 100;       %  Take a mean gradient step over this many samples

nn = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');


%% ex3 neural net with dropout
rng(0);
nn = nnsetup([784 100 10]);

nn.dropoutFraction = 0.5;   %  Dropout fraction 
opts.numepochs =  1;        %  Number of full sweeps through data
opts.batchsize = 100;       %  Take a mean gradient step over this many samples

nn = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');

%% ex4 neural net with sigmoid activation function, and without normalizing inputs
rng(0);
nn = nnsetup([784 100 10]);

nn.activation_function = 'sigm';    %  Sigmoid activation function
nn.normalize_input = 0;             %  Don't normalize inputs
nn.learningRate = 1;                %  Sigm and non-normalized inputs require a lower learning rate
opts.numepochs =  1;                %  Number of full sweeps through data
opts.batchsize = 100;               %  Take a mean gradient step over this many samples

nn = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');