-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitializers.py
212 lines (170 loc) · 5 KB
/
initializers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
class Initializer():
""" Initializer parent class.
Attributes
----------
seed : int
Seed of pseudo-random generators such as random parameter initialization.
Methods
-------
__init__(seed=None)
Constuctor.
"""
def __init__(self, seed=None):
""" Constructor.
Parameters
----------
seed : int
Seed of pseudo-random generators such as random parameter initialization.
Notes
-----
None
"""
self.seed = seed
class NormalInitializer(Initializer):
""" Normal, or Gaussian, parameter initializer.
Attributes
----------
coeff : float
Multiplicative coefficient of Normal distribution.
mean : float
Mean of Normal distribution.
std : float
Standard deviation of Normal distribution.
Methods
-------
__init__(seed=None, **params)
Constuctor.
initialize(size)
Initializes parameters by drawing from a Normal distribution.
__repr__()
Returns the string representation of class.
"""
def __init__(self, seed, **params):
""" Constructor.
Parameters
----------
seed : int
Seed of pseudo-random generators such as random parameter
initialization.
params : dict
Dictionary of initialization distribution parameters such as
multiplicative coefficient, mean, and standard deviation.
Notes
-----
None
"""
super().__init__(seed)
self.coeff = params["coeff"]
self.mean = params["mean"]
self.std = params["std"]
def initialize(self, size):
""" Initializes parameters by drawing from a Normal distribution.
Parameters
----------
size : tuple
Tuple of dimensions of the parameter tensor.
Returns
-------
numpy.ndarray
Initialized parameters.
Notes
-----
None
"""
np.random.seed(self.seed)
return self.coeff * np.random.normal(loc=self.mean, scale=self.std, size=size)
def __repr__(self):
""" Returns the string representation of class.
Parameters
----------
None
Returns
-------
repr_str : str
The string representation of the class.
Notes
-----
None
"""
repr_str = "normal ~ " + f"{self.coeff:.6f} x N({self.mean:.6f}, {self.std:.6f}^2)"
return repr_str
class XavierInitializer(Initializer):
""" Xavier initializer.
From: Understanding the difficulty of training deep feedforward neural networks
Attributes
----------
coeff : float
Multiplicative coefficient of Normal distribution.
mean : float
Mean of Normal distribution.
std : None
None as the Xavier initializer computes on its own the
standard deviation of the Normal distribution.
Methods
-------
__init__(seed=None, **params)
Constuctor.
initialize(size)
Initializes parameters by drawing from a Normal distribution.
__repr__()
Returns the string representation of class.
"""
def __init__(self, seed, **params):
""" Constructor.
Parameters
----------
seed : int
Seed of pseudo-random generators such as random parameter
initialization.
params : dict
Dictionary of initialization distribution parameters such as
multiplicative coefficient, mean, and the standard deviation
is None and is computed in self.initialize(size).
Notes
-----
None
Raises
------
AssertionError
If the std in the params dict is not None.
"""
super().__init__(seed)
self.coeff = params["coeff"]
self.mean = params["mean"]
assert params["std"] is None, "Xavier init takes no std"
def initialize(self, size):
""" Initializes parameters by drawing from a Normal distribution with
the Xavier strategy.
Parameters
----------
size : tuple
Tuple of dimensions of the parameter tensor.
Returns
-------
numpy.ndarray
Initialized parameters.
Notes
-----
None
"""
# size=(in_dim, out_dim)
np.random.seed(self.seed)
in_dim = size[0]
self.std = 1 / np.sqrt(in_dim)
return self.coeff * np.random.normal(loc=self.mean, scale=self.std, size=size)
def __repr__(self):
""" Returns the string representation of class.
Parameters
----------
None
Returns
-------
repr_str : str
The string representation of the class.
Notes
-----
None
"""
repr_str = "Xavier ~ " + f"{self.coeff:.6f} x N({self.mean:.6f}, {self.std:.6f}^2)"
return repr_str