-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
527 lines (425 loc) · 18 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import numpy as np
from copy import deepcopy
from tqdm import tqdm
import sys
import json
from random import shuffle
class Model():
""" Model class.
Attributes
----------
layers : list
List of layers of model.
reg_loss : float
The sum of the regularization losses of all layers of the model.
compiled : bool
Flag showing if the model is compiled.
optimizer : None or Optimizer
The optimizer used for fitting the model to the data.
loss : None or Loss
The loss function of the optimization.
metrics_dict : None or dict
The dictionary of the training and validation metric values over training.
loss_dict : None or dict
The dictionary of the training and validation loss values over training.
cost_dict : None or dict
The dictionary of the training and validation cost values over training.
Note that cost = data loss + regularization loss
metrics : None or list
The list of metrics for evaluating the model during training and validation over training.
lr_dict : None or dict
The dictionary of the learning rate values over update steps.
Methods
-------
__init__(layers)
Constuctor.
forward(x)
Forward propagates signal through the model.
backward(y)
Back-propagates signal through the model.
get_reg_loss()
Returns the overall regularization loss of the layers in the model.
get_gradients()
Returns the gradients of all parameters of all layers.
get_trainable_params()
Returns all trainable parameters of all layers.
set_trainable_params(trainable_params)
Sets all trainable parameters of all layers.
compile_model(optimizer, loss, metrics)
Compiles the model.
fit(x_train, y_train, x_val, y_val, n_epochs, batch_size)
Fits the model to the data.
__repr__()
Returns the string representation of class.
"""
def __init__(self, layers):
""" Constructor.
Parameters
----------
layers : list
List of layers of model.
Notes
-----
None
"""
self.layers = layers
self.reg_loss = 0.0
self.compiled = False
self.optimizer = None
self.loss = None
self.metrics_dict = None
self.loss_dict = None
self.cost_dict = None
self.metrics = None
self.lr_dict = None
def forward(self, x, **params):
""" Forward propagates signal through the model.
Parameters
----------
x : numpy.ndarray
Input data to model, shape is (batch_size, in_dim)
where in_dim is the input dimension of the first layer of the model.
params : dict
Dict of params for forward pass such as train or test mode, seed, etc.
Returns
-------
scores : numpy.ndarray
Activation of last layer of the model - the scores of the network.
Shape is (batch_size, out_dim) where out_dim is the output
dimension of the last layer of the model - usually same as
the number of classes.
Notes
-----
Iterates over layers in ascending order in the self.layers list.
"""
scores = deepcopy(x)
self.reg_loss = 0.0
for layer in self.layers:
scores_temp = layer.forward(scores, **params)
scores = deepcopy(scores_temp)
if layer.if_has_learnable_params():
self.reg_loss += layer.get_reg_loss()
return scores
def backward(self, y, **params):
""" Back-propagates signal through the model.
Parameters
----------
y : numpy.ndarray
Labels of the input data to model, shape is (batch_size, ).
Returns
-------
None
Notes
-----
Iterates over layers in descending order in the self.layers list.
"""
g = deepcopy(y)
for layer in list(reversed(self.layers)):
g_temp = layer.backward(g, **params)
g = deepcopy(g_temp)
def get_reg_loss(self, ):
""" Returns the overall regularization loss of the layers in the model.
Parameters
----------
None
Returns
-------
float
The sum of the regularization losses of all layers of the model.
Notes
-----
None
"""
return self.reg_loss
def get_gradients(self, ):
""" Returns the gradients of all parameters of all layers.
Parameters
----------
None
Returns
-------
grads : list
The list of dictionaries of gradients of all parameters of all layers of the model.
At idx is the dictionary of gradients of layer idx in the self.layers list.
A list has two keys - dw and db.
Notes
-----
Iterates over layers in ascending order in the self.layers list.
"""
grads = []
for idx, layer in enumerate(self.layers):
if layer.if_has_learnable_params():
#dw = layer.get_dw()
#db = layer.get_db()
learnable_params_grads = layer.get_learnable_params_grads()
else:
pass
#raise Exception("no grads yet")
grads.append(learnable_params_grads)
return deepcopy(grads)
def get_trainable_params(self, ):
""" Returns all trainable parameters of all layers.
Parameters
----------
None
Returns
-------
trainable_params : list
The list of dictionaries of the trainable parameters of all layers of the model.
At idx is the dictionary of trainable parameters of layer idx in the self.layers list.
A list has two keys - w and b.
Notes
-----
Iterates over layers in ascending order in the self.layers list.
"""
trainable_params = []
for idx, layer in enumerate(self.layers):
if layer.if_has_learnable_params():
#w = layer.get_w()
#b = layer.get_b()
learnable_params = layer.get_learnable_params()
else:
pass
#raise Exception("no trainable params")
trainable_params.append(learnable_params)
return deepcopy(trainable_params)
def set_trainable_params(self, trainable_params):
""" Sets all trainable parameters of all layers.
Parameters
----------
trainable_params : list
The list of dictionaries of the trainable parameters of all layers of the model.
At idx is the dictionary of trainable parameters of layer idx in the self.layers list.
A list has two keys - w and b.
Returns
-------
None
Notes
-----
Iterates over layers in ascending order in the self.layers list.
"""
for idx, layer in enumerate(self.layers):
trainable_param_dict = deepcopy(trainable_params[idx])
#w = trainable_weight_dict["w"]
#b = trainable_weight_dict["b"]
if layer.if_has_learnable_params():
#layer.set_w(deepcopy(w))
#layer.set_b(deepcopy(b))
layer.set_learnable_params(**trainable_param_dict)
else:
pass
def compile_model(self, optimizer, loss, metrics):
""" Compiles the model.
Parameters
----------
optimizer : None or Optimizer
The optimizer used for fitting the model to the data.
loss : None or Loss
The loss function of the optimization.
metrics : None or list
The list of metrics for evaluating the model during training and validation over training.
Returns
-------
None
Notes
-----
Sets self.compiled to True. If self.compiled is not called, self.fit will raise AssertionError.
"""
self.optimizer = optimizer
self.loss = loss
metrics_train = {metric.name + "_train": [] for metric in metrics}
metrics_val = {metric.name + "_val": [] for metric in metrics}
self.metrics_dict = {**metrics_train, **metrics_val}
self.loss_dict = {"loss_train": [], "loss_val": []}
self.cost_dict = {"cost_train": [], "cost_val": []}
self.metrics = metrics
self.lr_dict = {"lr": []}
self.compiled = True
def compute_metrics(self, y, scores, postfix=None):
assert postfix in ["train", "val"] or postfix is None
metrics_dict = {}
for metrics in self.metrics:
metrics_value = metrics.compute(y, scores)
if postfix is not None:
key = metrics.name + "_" + postfix
self.metrics_dict[key].append(metrics_value)
else:
key = metrics.name
metrics_dict[key] = metrics_value
return metrics_dict
def fit(self, x_train, y_train, x_val, y_val, n_epochs, batch_size, verbose, aug_func):
""" Fits the model to the data.
Parameters
----------
x_train : numpy.ndarray
Training data to model of shape (batch_size, in_dim) where in_dim is
the input dimension of the first layer of the Model.
y_train : numpy.ndarray
True labels of training data.
Shape is (batch_size, )
x_val : numpy.ndarray
Validation data to model of shape (batch_size, in_dim) where in_dim is
the input dimension of the first layer of the Model.
y_val : numpy.ndarray
True labels of validation data.
Shape is (batch_size, )
n_epochs : int
The number of epochs to train for.
batch_size : int
The batch size of the mini-batch gradient descent algorithm.
x_train.shape[0] has to be divisible by batch_size
verbose : int
The degree to which training progress is printed in the console.
2: print all, 1: print some, 0: do not print
aug_func : func
Data augmentation function using imgaug.
Returns
-------
dict
The history of training and validation loss, metrics, and learning rates.
dict is {**self.metrics_dict, **self.loss_dict, **self.lr_dict}
Notes
-----
None
Raises
------
AssertionError
If the model has not yet been complied with the self.compiled method.
"""
assert self.compiled, "Model has to be compiled before fitting."
assert isinstance(verbose, int) and verbose in [0, 1, 2], \
f"verbose has to be an integer and in [0,1,2], but got {verbose} (type: {type(verbose)})"
for n_epoch in range(n_epochs):
if verbose in [1, 2]:
print(f"starting epoch: {n_epoch + 1} ...")
# Shuffle data
indices = np.arange(x_train.shape[0])
np.random.shuffle(indices)
x_train = x_train[indices]
y_train = y_train[indices]
n_batch = int(x_train.shape[0] / batch_size)
if verbose in [2]:
batches = tqdm(range(n_batch), file=sys.stdout)
else:
batches = range(n_batch)
params_train = {"mode": "train", "seed": None}
for b in batches:
if verbose in [2]:
batches.set_description(f"batch {b + 1}/{n_batch}")
x_batch = x_train[b * batch_size:(b + 1) * batch_size]
if aug_func is not None:
x_batch = aug_func(x_batch)
y_batch = y_train[b * batch_size:(b + 1) * batch_size]
scores = self.forward(x_batch, **params_train)
layers_reg_loss = self.get_reg_loss()
data_loss = self.loss.compute_loss(scores, y_batch)
cost = data_loss + layers_reg_loss
self.backward(self.loss.grad(), **params_train)
trainable_params = \
self.optimizer.apply_grads(trainable_params=self.get_trainable_params(),
grads=self.get_gradients())
self.set_trainable_params(trainable_params)
# should I do it here? yes
self.optimizer.apply_lr_schedule()
self.lr_dict["lr"].append(self.optimizer.get_lr())
params_test = {"mode": "test", "seed": None}
scores_train = self.forward(x_train, **params_test)
layers_reg_loss_train = self.get_reg_loss()
data_loss_train = self.loss.compute_loss(scores_train, y_train)
cost_train = data_loss_train + layers_reg_loss_train
scores_val = self.forward(x_val, **params_test)
layers_reg_loss_val = self.get_reg_loss()
data_loss_val = self.loss.compute_loss(scores_val, y_val)
cost_val = data_loss_val + layers_reg_loss_val
self.loss_dict["loss_train"].append(data_loss_train)
self.loss_dict["loss_val"].append(data_loss_val)
self.cost_dict["cost_train"].append(cost_train)
self.cost_dict["cost_val"].append(cost_val)
train_str = f"train loss = {data_loss_train} / train cost = {cost_train}"
val_str = f"val loss = {data_loss_val} / val cost = {cost_val}"
metrics_dict_train = self.compute_metrics(y_train, scores_train, postfix="train")
metrics_dict_val = self.compute_metrics(y_val, scores_val, postfix="val")
train_str += "\n\t -- " + json.dumps(metrics_dict_train)
val_str += "\n\t -- " + json.dumps(metrics_dict_val)
if verbose in [1, 2]:
print(f"epoch {n_epoch + 1}/{n_epochs} \n "
f"\t -- {train_str} \n"
f"\t -- {val_str} \n\n")
# self.optimizer.apply_lr_schedule()
return {**self.metrics_dict, **self.loss_dict, **self.cost_dict, **self.lr_dict}
def fit_rnn(self, x_train, y_train, x_val, y_val, n_epochs, batch_size, verbose, callbacks):
assert self.compiled, "Model has to be compiled before fitting."
assert isinstance(verbose, int) and verbose in [0, 1, 2], \
f"verbose has to be an integer and in [0,1,2], but got {verbose} (type: {type(verbose)})"
n_step = 0
for n_epoch in range(n_epochs):
if verbose in [1, 2]:
print(f"starting epoch: {n_epoch + 1} ...")
# Shuffle contexts in the beginning of each epoch
indices_shuffle = list(range(len(x_train)))
shuffle(indices_shuffle)
x_train = [x for i, x in sorted(zip(indices_shuffle, x_train))]
y_train = [x for i, x in sorted(zip(indices_shuffle, y_train))]
for idx_context, (x_train_context, y_train_context) in enumerate(zip(x_train, y_train)):
if idx_context % 1000 == 0:
print(f"starting context: {idx_context + 1}/{len(x_train)} ...")
n_batch = int(x_train_context.shape[0] / batch_size)
if verbose in [2]:
if n_step % 5000 == 0:
batches = tqdm(range(n_batch), file=sys.stdout)
else:
batches = range(n_batch)
params_train = {"mode": "train", "seed": None}
for b in batches:
x_batch = x_train_context[b * batch_size:(b + 1) * batch_size]
y_batch = y_train_context[b * batch_size + 1:(b + 1) * batch_size + 1]
# dirty solve: if cannot fit a y batch into context, skip the remaining skimmed-batch
if y_batch.shape[0] < batch_size:
continue
scores = self.forward(x_batch, **params_train)
layers_reg_loss = self.get_reg_loss()
data_loss = self.loss.compute_loss(scores, y_batch)
cost = data_loss + layers_reg_loss
self.backward(self.loss.grad(), **params_train)
trainable_params = \
self.optimizer.apply_grads(trainable_params=self.get_trainable_params(),
grads=self.get_gradients())
self.set_trainable_params(trainable_params)
self.loss_dict["loss_train"].append(data_loss)
self.lr_dict["lr"].append(self.optimizer.get_lr())
# should I do it here? yes
self.optimizer.apply_lr_schedule()
if verbose in [2]:
str_update = f"batch {b + 1}/{n_batch} (n_step: {n_step}), loss = {data_loss:.4f}"
if n_step % 5000 == 0:
batches.set_description(str_update)
for callback in callbacks:
callback(n_step)
n_step += 1
# reset rnn h init here after each context
# for the hp book a context is the entire book
# for tweets, a context is one tweet
for layer in self.layers:
#if isinstance(layer, RNN):
layer.reset_hidden_state()
return {**self.metrics_dict, **self.loss_dict, **self.cost_dict, **self.lr_dict}
def __repr__(self, ):
""" Returns the string representation of class.
Parameters
----------
None
Returns
-------
repr_str : str
The string representation of the class.
Notes
-----
None
"""
assert self.compiled
repr_str = "model summary: \n"
for idx, layer in enumerate(self.layers):
repr_str = repr_str + f"layer {idx}: " + layer.__repr__() + "\n"
repr_str += self.loss.__repr__() + "\n"
repr_str += self.optimizer.__repr__() + "\n"
return repr_str