From 7712ed5b16d809e4cf63285b78f9b65d2588fb21 Mon Sep 17 00:00:00 2001 From: Masayoshi TSUZUKI Date: Sun, 1 Feb 2015 18:26:28 -0800 Subject: [PATCH 01/28] [SPARK-1825] Make Windows Spark client work fine with Linux YARN cluster Modified environment strings and path separators to platform-independent style if possible. Author: Masayoshi TSUZUKI Closes #3943 from tsudukim/feature/SPARK-1825 and squashes the following commits: ec4b865 [Masayoshi TSUZUKI] Rebased and modified as comments. f8a1d5a [Masayoshi TSUZUKI] Merge branch 'master' of github.com:tsudukim/spark into feature/SPARK-1825 3d03d35 [Masayoshi TSUZUKI] [SPARK-1825] Make Windows Spark client work fine with Linux YARN cluster --- .../org/apache/spark/deploy/yarn/Client.scala | 21 ++++++++++--- .../spark/deploy/yarn/ExecutorRunnable.scala | 8 +++-- .../deploy/yarn/YarnSparkHadoopUtil.scala | 31 ++++++++++++++++++- .../spark/deploy/yarn/ClientSuite.scala | 18 +++++++---- .../yarn/YarnSparkHadoopUtilSuite.scala | 25 +++++++++++++++ 5 files changed, 89 insertions(+), 14 deletions(-) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala index d4eeccf64275f..1a18e6509ef26 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala @@ -400,7 +400,10 @@ private[spark] class Client( // Add Xmx for AM memory javaOpts += "-Xmx" + args.amMemory + "m" - val tmpDir = new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + val tmpDir = new Path( + YarnSparkHadoopUtil.expandEnvironment(Environment.PWD), + YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR + ) javaOpts += "-Djava.io.tmpdir=" + tmpDir // TODO: Remove once cpuset version is pushed out. @@ -491,7 +494,9 @@ private[spark] class Client( "--num-executors ", args.numExecutors.toString) // Command for the ApplicationMaster - val commands = prefixEnv ++ Seq(Environment.JAVA_HOME.$() + "/bin/java", "-server") ++ + val commands = prefixEnv ++ Seq( + YarnSparkHadoopUtil.expandEnvironment(Environment.JAVA_HOME) + "/bin/java", "-server" + ) ++ javaOpts ++ amArgs ++ Seq( "1>", ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout", @@ -769,7 +774,9 @@ object Client extends Logging { env: HashMap[String, String], extraClassPath: Option[String] = None): Unit = { extraClassPath.foreach(addClasspathEntry(_, env)) - addClasspathEntry(Environment.PWD.$(), env) + addClasspathEntry( + YarnSparkHadoopUtil.expandEnvironment(Environment.PWD), env + ) // Normally the users app.jar is last in case conflicts with spark jars if (sparkConf.getBoolean("spark.yarn.user.classpath.first", false)) { @@ -783,7 +790,9 @@ object Client extends Logging { } // Append all jar files under the working directory to the classpath. - addClasspathEntry(Environment.PWD.$() + Path.SEPARATOR + "*", env) + addClasspathEntry( + YarnSparkHadoopUtil.expandEnvironment(Environment.PWD) + Path.SEPARATOR + "*", env + ) } /** @@ -838,7 +847,9 @@ object Client extends Logging { } } if (fileName != null) { - addClasspathEntry(Environment.PWD.$() + Path.SEPARATOR + fileName, env) + addClasspathEntry( + YarnSparkHadoopUtil.expandEnvironment(Environment.PWD) + Path.SEPARATOR + fileName, env + ) } } diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ExecutorRunnable.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ExecutorRunnable.scala index c537da9f67552..ee2002a35f523 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ExecutorRunnable.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ExecutorRunnable.scala @@ -142,7 +142,10 @@ class ExecutorRunnable( } javaOpts += "-Djava.io.tmpdir=" + - new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + new Path( + YarnSparkHadoopUtil.expandEnvironment(Environment.PWD), + YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR + ) // Certain configs need to be passed here because they are needed before the Executor // registers with the Scheduler and transfers the spark configs. Since the Executor backend @@ -181,7 +184,8 @@ class ExecutorRunnable( // For log4j configuration to reference javaOpts += ("-Dspark.yarn.app.container.log.dir=" + ApplicationConstants.LOG_DIR_EXPANSION_VAR) - val commands = prefixEnv ++ Seq(Environment.JAVA_HOME.$() + "/bin/java", + val commands = prefixEnv ++ Seq( + YarnSparkHadoopUtil.expandEnvironment(Environment.JAVA_HOME) + "/bin/java", "-server", // Kill if OOM is raised - leverage yarn's failure handling to cause rescheduling. // Not killing the task leaves various aspects of the executor and (to some extent) the jvm in diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala index 4e39c1d58011b..146b2c0f1a302 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala @@ -22,12 +22,15 @@ import java.util.regex.Matcher import java.util.regex.Pattern import scala.collection.mutable.HashMap +import scala.util.Try import org.apache.hadoop.io.Text import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.security.Credentials import org.apache.hadoop.security.UserGroupInformation import org.apache.hadoop.yarn.conf.YarnConfiguration +import org.apache.hadoop.yarn.api.ApplicationConstants +import org.apache.hadoop.yarn.api.ApplicationConstants.Environment import org.apache.hadoop.yarn.api.records.{Priority, ApplicationAccessType} import org.apache.hadoop.conf.Configuration @@ -102,7 +105,7 @@ object YarnSparkHadoopUtil { * If the map already contains this key, append the value to the existing value instead. */ def addPathToEnvironment(env: HashMap[String, String], key: String, value: String): Unit = { - val newValue = if (env.contains(key)) { env(key) + File.pathSeparator + value } else value + val newValue = if (env.contains(key)) { env(key) + getClassPathSeparator + value } else value env.put(key, newValue) } @@ -182,4 +185,30 @@ object YarnSparkHadoopUtil { ) } + /** + * Expand environment variable using Yarn API. + * If environment.$$() is implemented, return the result of it. + * Otherwise, return the result of environment.$() + * Note: $$() is added in Hadoop 2.4. + */ + private lazy val expandMethod = + Try(classOf[Environment].getMethod("$$")) + .getOrElse(classOf[Environment].getMethod("$")) + + def expandEnvironment(environment: Environment): String = + expandMethod.invoke(environment).asInstanceOf[String] + + /** + * Get class path separator using Yarn API. + * If ApplicationConstants.CLASS_PATH_SEPARATOR is implemented, return it. + * Otherwise, return File.pathSeparator + * Note: CLASS_PATH_SEPARATOR is added in Hadoop 2.4. + */ + private lazy val classPathSeparatorField = + Try(classOf[ApplicationConstants].getField("CLASS_PATH_SEPARATOR")) + .getOrElse(classOf[File].getField("pathSeparator")) + + def getClassPathSeparator(): String = { + classPathSeparatorField.get(null).asInstanceOf[String] + } } diff --git a/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientSuite.scala b/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientSuite.scala index aad50015b717f..2bb3dcffd61d9 100644 --- a/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientSuite.scala +++ b/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientSuite.scala @@ -28,8 +28,6 @@ import org.apache.hadoop.yarn.api.records._ import org.apache.hadoop.yarn.conf.YarnConfiguration import org.mockito.Matchers._ import org.mockito.Mockito._ - - import org.scalatest.FunSuite import org.scalatest.Matchers @@ -89,7 +87,7 @@ class ClientSuite extends FunSuite with Matchers { Client.populateClasspath(args, conf, sparkConf, env) - val cp = env("CLASSPATH").split(File.pathSeparator) + val cp = env("CLASSPATH").split(":|;|") s"$SPARK,$USER,$ADDED".split(",").foreach({ entry => val uri = new URI(entry) if (Client.LOCAL_SCHEME.equals(uri.getScheme())) { @@ -98,8 +96,16 @@ class ClientSuite extends FunSuite with Matchers { cp should not contain (uri.getPath()) } }) - cp should contain (Environment.PWD.$()) - cp should contain (s"${Environment.PWD.$()}${File.separator}*") + if (classOf[Environment].getMethods().exists(_.getName == "$$")) { + cp should contain("{{PWD}}") + cp should contain(s"{{PWD}}${Path.SEPARATOR}*") + } else if (Utils.isWindows) { + cp should contain("%PWD%") + cp should contain(s"%PWD%${Path.SEPARATOR}*") + } else { + cp should contain(Environment.PWD.$()) + cp should contain(s"${Environment.PWD.$()}${File.separator}*") + } cp should not contain (Client.SPARK_JAR) cp should not contain (Client.APP_JAR) } @@ -223,7 +229,7 @@ class ClientSuite extends FunSuite with Matchers { def newEnv = MutableHashMap[String, String]() - def classpath(env: MutableHashMap[String, String]) = env(Environment.CLASSPATH.name).split(":|;") + def classpath(env: MutableHashMap[String, String]) = env(Environment.CLASSPATH.name).split(":|;|") def flatten(a: Option[Seq[String]], b: Option[Seq[String]]) = (a ++ b).flatten.toArray diff --git a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtilSuite.scala b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtilSuite.scala index 2cc5abb3a890c..b5a2db8f6225c 100644 --- a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtilSuite.scala +++ b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtilSuite.scala @@ -20,12 +20,15 @@ package org.apache.spark.deploy.yarn import java.io.{File, IOException} import com.google.common.io.{ByteStreams, Files} +import org.apache.hadoop.yarn.api.ApplicationConstants +import org.apache.hadoop.yarn.api.ApplicationConstants.Environment import org.apache.hadoop.yarn.conf.YarnConfiguration import org.scalatest.{FunSuite, Matchers} import org.apache.hadoop.yarn.api.records.ApplicationAccessType import org.apache.spark.{Logging, SecurityManager, SparkConf} +import org.apache.spark.util.Utils class YarnSparkHadoopUtilSuite extends FunSuite with Matchers with Logging { @@ -148,4 +151,26 @@ class YarnSparkHadoopUtilSuite extends FunSuite with Matchers with Logging { } } + + test("test expandEnvironment result") { + val target = Environment.PWD + if (classOf[Environment].getMethods().exists(_.getName == "$$")) { + YarnSparkHadoopUtil.expandEnvironment(target) should be ("{{" + target + "}}") + } else if (Utils.isWindows) { + YarnSparkHadoopUtil.expandEnvironment(target) should be ("%" + target + "%") + } else { + YarnSparkHadoopUtil.expandEnvironment(target) should be ("$" + target) + } + + } + + test("test getClassPathSeparator result") { + if (classOf[ApplicationConstants].getFields().exists(_.getName == "CLASS_PATH_SEPARATOR")) { + YarnSparkHadoopUtil.getClassPathSeparator() should be ("") + } else if (Utils.isWindows) { + YarnSparkHadoopUtil.getClassPathSeparator() should be (";") + } else { + YarnSparkHadoopUtil.getClassPathSeparator() should be (":") + } + } } From 1b56f1d6bb079a669ae83e70ee515373ade2a469 Mon Sep 17 00:00:00 2001 From: OopsOutOfMemory Date: Sun, 1 Feb 2015 18:41:49 -0800 Subject: [PATCH 02/28] [SPARK-5196][SQL] Support `comment` in Create Table Field DDL Support `comment` in create a table field. __CREATE TEMPORARY TABLE people(name string `comment` "the name of a person")__ Author: OopsOutOfMemory Closes #3999 from OopsOutOfMemory/meta_comment and squashes the following commits: 39150d4 [OopsOutOfMemory] add comment and refine test suite --- .../org/apache/spark/sql/sources/ddl.scala | 11 +++++++--- .../spark/sql/sources/TableScanSuite.scala | 20 +++++++++++++++++++ 2 files changed, 28 insertions(+), 3 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala index b4af91a768efb..b7c721f8c0691 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala @@ -27,7 +27,6 @@ import org.apache.spark.sql.execution.RunnableCommand import org.apache.spark.sql.types._ import org.apache.spark.util.Utils - /** * A parser for foreign DDL commands. */ @@ -59,6 +58,7 @@ private[sql] class DDLParser extends AbstractSparkSQLParser with Logging { protected val TABLE = Keyword("TABLE") protected val USING = Keyword("USING") protected val OPTIONS = Keyword("OPTIONS") + protected val COMMENT = Keyword("COMMENT") // Data types. protected val STRING = Keyword("STRING") @@ -111,8 +111,13 @@ private[sql] class DDLParser extends AbstractSparkSQLParser with Logging { protected lazy val pair: Parser[(String, String)] = ident ~ stringLit ^^ { case k ~ v => (k,v) } protected lazy val column: Parser[StructField] = - ident ~ dataType ^^ { case columnName ~ typ => - StructField(columnName, typ) + ident ~ dataType ~ (COMMENT ~> stringLit).? ^^ { case columnName ~ typ ~ cm => + val meta = cm match { + case Some(comment) => + new MetadataBuilder().putString(COMMENT.str.toLowerCase(), comment).build() + case None => Metadata.empty + } + StructField(columnName, typ, true, meta) } protected lazy val primitiveType: Parser[DataType] = diff --git a/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala index b1e0919b7aed1..0a4d4b6342d4f 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala @@ -344,4 +344,24 @@ class TableScanSuite extends DataSourceTest { } assert(schemaNeeded.getMessage.contains("A schema needs to be specified when using")) } + + test("SPARK-5196 schema field with comment") { + sql( + """ + |CREATE TEMPORARY TABLE student(name string comment "SN", age int comment "SA", grade int) + |USING org.apache.spark.sql.sources.AllDataTypesScanSource + |OPTIONS ( + | from '1', + | to '10' + |) + """.stripMargin) + + val planned = sql("SELECT * FROM student").queryExecution.executedPlan + val comments = planned.schema.fields.map { field => + if (field.metadata.contains("comment")) field.metadata.getString("comment") + else "NO_COMMENT" + }.mkString(",") + + assert(comments === "SN,SA,NO_COMMENT") + } } From 8cf4a1f02e40f37f940f6a347c078f5879585bf4 Mon Sep 17 00:00:00 2001 From: Daoyuan Wang Date: Sun, 1 Feb 2015 18:51:38 -0800 Subject: [PATCH 03/28] [SPARK-5262] [SPARK-5244] [SQL] add coalesce in SQLParser and widen types for parameters of coalesce I'll add test case in #4040 Author: Daoyuan Wang Closes #4057 from adrian-wang/coal and squashes the following commits: 4d0111a [Daoyuan Wang] address Yin's comments c393e18 [Daoyuan Wang] fix rebase conflicts e47c03a [Daoyuan Wang] add coalesce in parser c74828d [Daoyuan Wang] cast types for coalesce --- .../apache/spark/sql/catalyst/SqlParser.scala | 2 ++ .../catalyst/analysis/HiveTypeCoercion.scala | 16 +++++++++++ .../analysis/HiveTypeCoercionSuite.scala | 27 +++++++++++++++++++ .../org/apache/spark/sql/SQLQuerySuite.scala | 12 +++++++++ .../org/apache/spark/sql/hive/HiveQl.scala | 2 ++ .../execution/HiveTypeCoercionSuite.scala | 6 +++++ 6 files changed, 65 insertions(+) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 24a65f8f4d379..594a423146d77 100755 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -50,6 +50,7 @@ class SqlParser extends AbstractSparkSQLParser { protected val CACHE = Keyword("CACHE") protected val CASE = Keyword("CASE") protected val CAST = Keyword("CAST") + protected val COALESCE = Keyword("COALESCE") protected val COUNT = Keyword("COUNT") protected val DECIMAL = Keyword("DECIMAL") protected val DESC = Keyword("DESC") @@ -295,6 +296,7 @@ class SqlParser extends AbstractSparkSQLParser { { case s ~ p => Substring(s, p, Literal(Integer.MAX_VALUE)) } | (SUBSTR | SUBSTRING) ~ "(" ~> expression ~ ("," ~> expression) ~ ("," ~> expression) <~ ")" ^^ { case s ~ p ~ l => Substring(s, p, l) } + | COALESCE ~ "(" ~> repsep(expression, ",") <~ ")" ^^ { case exprs => Coalesce(exprs) } | SQRT ~ "(" ~> expression <~ ")" ^^ { case exp => Sqrt(exp) } | ABS ~ "(" ~> expression <~ ")" ^^ { case exp => Abs(exp) } | ident ~ ("(" ~> repsep(expression, ",")) <~ ")" ^^ diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala index 6ef8577fd04da..34ef7d28cc7f2 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala @@ -503,6 +503,22 @@ trait HiveTypeCoercion { // Hive lets you do aggregation of timestamps... for some reason case Sum(e @ TimestampType()) => Sum(Cast(e, DoubleType)) case Average(e @ TimestampType()) => Average(Cast(e, DoubleType)) + + // Coalesce should return the first non-null value, which could be any column + // from the list. So we need to make sure the return type is deterministic and + // compatible with every child column. + case Coalesce(es) if es.map(_.dataType).distinct.size > 1 => + val dt: Option[DataType] = Some(NullType) + val types = es.map(_.dataType) + val rt = types.foldLeft(dt)((r, c) => r match { + case None => None + case Some(d) => findTightestCommonType(d, c) + }) + rt match { + case Some(finaldt) => Coalesce(es.map(Cast(_, finaldt))) + case None => + sys.error(s"Could not determine return type of Coalesce for ${types.mkString(",")}") + } } } diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercionSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercionSuite.scala index f5a502b43f80b..85798d0871fda 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercionSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercionSuite.scala @@ -114,4 +114,31 @@ class HiveTypeCoercionSuite extends FunSuite { // Stringify boolean when casting to string. ruleTest(Cast(Literal(false), StringType), If(Literal(false), Literal("true"), Literal("false"))) } + + test("coalesce casts") { + val fac = new HiveTypeCoercion { }.FunctionArgumentConversion + def ruleTest(initial: Expression, transformed: Expression) { + val testRelation = LocalRelation(AttributeReference("a", IntegerType)()) + assert(fac(Project(Seq(Alias(initial, "a")()), testRelation)) == + Project(Seq(Alias(transformed, "a")()), testRelation)) + } + ruleTest( + Coalesce(Literal(1.0) + :: Literal(1) + :: Literal(1.0, FloatType) + :: Nil), + Coalesce(Cast(Literal(1.0), DoubleType) + :: Cast(Literal(1), DoubleType) + :: Cast(Literal(1.0, FloatType), DoubleType) + :: Nil)) + ruleTest( + Coalesce(Literal(1L) + :: Literal(1) + :: Literal(new java.math.BigDecimal("1000000000000000000000")) + :: Nil), + Coalesce(Cast(Literal(1L), DecimalType()) + :: Cast(Literal(1), DecimalType()) + :: Cast(Literal(new java.math.BigDecimal("1000000000000000000000")), DecimalType()) + :: Nil)) + } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index d684278f11bcb..d82c34316cefa 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -88,6 +88,18 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { setConf(SQLConf.CODEGEN_ENABLED, originalValue.toString) } + test("Add Parser of SQL COALESCE()") { + checkAnswer( + sql("""SELECT COALESCE(1, 2)"""), + Row(1)) + checkAnswer( + sql("SELECT COALESCE(null, 1, 1.5)"), + Row(1.toDouble)) + checkAnswer( + sql("SELECT COALESCE(null, null, null)"), + Row(null)) + } + test("SPARK-3176 Added Parser of SQL LAST()") { checkAnswer( sql("SELECT LAST(n) FROM lowerCaseData"), diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala index 399e58b259a45..30a64b48d7951 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala @@ -965,6 +965,7 @@ https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C /* Case insensitive matches */ val ARRAY = "(?i)ARRAY".r + val COALESCE = "(?i)COALESCE".r val COUNT = "(?i)COUNT".r val AVG = "(?i)AVG".r val SUM = "(?i)SUM".r @@ -1140,6 +1141,7 @@ https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C Substring(nodeToExpr(string), nodeToExpr(pos), Literal(Integer.MAX_VALUE, IntegerType)) case Token("TOK_FUNCTION", Token(SUBSTR(), Nil) :: string :: pos :: length :: Nil) => Substring(nodeToExpr(string), nodeToExpr(pos), nodeToExpr(length)) + case Token("TOK_FUNCTION", Token(COALESCE(), Nil) :: list) => Coalesce(list.map(nodeToExpr)) /* UDFs - Must be last otherwise will preempt built in functions */ case Token("TOK_FUNCTION", Token(name, Nil) :: args) => diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveTypeCoercionSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveTypeCoercionSuite.scala index 48fffe53cf2ff..ab0e0443c7faa 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveTypeCoercionSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveTypeCoercionSuite.scala @@ -57,4 +57,10 @@ class HiveTypeCoercionSuite extends HiveComparisonTest { } assert(numEquals === 1) } + + test("COALESCE with different types") { + intercept[RuntimeException] { + TestHive.sql("""SELECT COALESCE(1, true, "abc") FROM src limit 1""").collect() + } + } } From ec1003219b8978291abca2fc409ee61b1bb40a38 Mon Sep 17 00:00:00 2001 From: Cheng Lian Date: Sun, 1 Feb 2015 18:52:39 -0800 Subject: [PATCH 04/28] [SPARK-5465] [SQL] Fixes filter push-down for Parquet data source Not all Catalyst filter expressions can be converted to Parquet filter predicates. We should try to convert each individual predicate and then collect those convertible ones. [Review on Reviewable](https://reviewable.io/reviews/apache/spark/4255) Author: Cheng Lian Closes #4255 from liancheng/spark-5465 and squashes the following commits: 14ccd37 [Cheng Lian] Fixes filter push-down for Parquet data source --- .../apache/spark/sql/parquet/newParquet.scala | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala index 1b50afbbabcb0..1e794cad73936 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala @@ -20,26 +20,26 @@ import java.util.{List => JList} import scala.collection.JavaConversions._ -import org.apache.hadoop.fs.{FileStatus, FileSystem, Path} import org.apache.hadoop.conf.{Configurable, Configuration} +import org.apache.hadoop.fs.{FileStatus, FileSystem, Path} import org.apache.hadoop.io.Writable -import org.apache.hadoop.mapreduce.{JobContext, InputSplit, Job} - +import org.apache.hadoop.mapreduce.{InputSplit, Job, JobContext} +import parquet.filter2.predicate.FilterApi import parquet.hadoop.ParquetInputFormat import parquet.hadoop.util.ContextUtil import org.apache.spark.annotation.DeveloperApi -import org.apache.spark.{Partition => SparkPartition, Logging} import org.apache.spark.rdd.{NewHadoopPartition, RDD} -import org.apache.spark.sql.{SQLConf, Row, SQLContext} import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.sources._ import org.apache.spark.sql.types.{IntegerType, StructField, StructType} +import org.apache.spark.sql.{Row, SQLConf, SQLContext} +import org.apache.spark.{Logging, Partition => SparkPartition} /** * Allows creation of parquet based tables using the syntax - * `CREATE TEMPORARY TABLE ... USING org.apache.spark.sql.parquet`. Currently the only option + * `CREATE TEMPORARY TABLE ... USING org.apache.spark.sql.parquet`. Currently the only option * required is `path`, which should be the location of a collection of, optionally partitioned, * parquet files. */ @@ -193,10 +193,12 @@ case class ParquetRelation2(path: String)(@transient val sqlContext: SQLContext) org.apache.hadoop.mapreduce.lib.input.FileInputFormat.setInputPaths(job, selectedFiles: _*) } - // Push down filters when possible + // Push down filters when possible. Notice that not all filters can be converted to Parquet + // filter predicate. Here we try to convert each individual predicate and only collect those + // convertible ones. predicates - .reduceOption(And) .flatMap(ParquetFilters.createFilter) + .reduceOption(FilterApi.and) .filter(_ => sqlContext.conf.parquetFilterPushDown) .foreach(ParquetInputFormat.setFilterPredicate(jobConf, _)) From d85cd4eb1479f8d37dab360530dc2c71216b4a8d Mon Sep 17 00:00:00 2001 From: Yuhao Yang Date: Sun, 1 Feb 2015 19:40:26 -0800 Subject: [PATCH 05/28] [Spark-5406][MLlib] LocalLAPACK mode in RowMatrix.computeSVD should have much smaller upper bound JIRA link: https://issues.apache.org/jira/browse/SPARK-5406 The code in breeze svd imposes the upper bound for LocalLAPACK in RowMatrix.computeSVD code from breeze svd (https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/linalg/functions/svd.scala) val workSize = ( 3 * scala.math.min(m, n) * scala.math.min(m, n) + scala.math.max(scala.math.max(m, n), 4 * scala.math.min(m, n) * scala.math.min(m, n) + 4 * scala.math.min(m, n)) ) val work = new Array[Double](workSize) As a result, 7 * n * n + 4 * n < Int.MaxValue at least (depends on JVM) In some worse cases, like n = 25000, work size will become positive again (80032704) and bring wired behavior. The PR is only the beginning, to support Genbase ( an important biological benchmark that would help promote Spark to genetic applications, http://www.paradigm4.com/wp-content/uploads/2014/06/Genomics-Benchmark-Technical-Report.pdf), which needs to compute svd for matrix up to 60K * 70K. I found many potential issues and would like to know if there's any plan undergoing that would expand the range of matrix computation based on Spark. Thanks. Author: Yuhao Yang Closes #4200 from hhbyyh/rowMatrix and squashes the following commits: f7864d0 [Yuhao Yang] update auto logic for rowMatrix svd 23860e4 [Yuhao Yang] fix comment style e48a6e4 [Yuhao Yang] make latent svd computation constraint clear --- .../apache/spark/mllib/linalg/distributed/RowMatrix.scala | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala index 53b79704703ce..961111507f2c2 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala @@ -219,8 +219,12 @@ class RowMatrix( val computeMode = mode match { case "auto" => + if(k > 5000) { + logWarning(s"computing svd with k=$k and n=$n, please check necessity") + } + // TODO: The conditions below are not fully tested. - if (n < 100 || k > n / 2) { + if (n < 100 || (k > n / 2 && n <= 15000)) { // If n is small or k is large compared with n, we better compute the Gramian matrix first // and then compute its eigenvalues locally, instead of making multiple passes. if (k < n / 3) { @@ -245,6 +249,8 @@ class RowMatrix( val G = computeGramianMatrix().toBreeze.asInstanceOf[BDM[Double]] EigenValueDecomposition.symmetricEigs(v => G * v, n, k, tol, maxIter) case SVDMode.LocalLAPACK => + // breeze (v0.10) svd latent constraint, 7 * n * n + 4 * n < Int.MaxValue + require(n < 17515, s"$n exceeds the breeze svd capability") val G = computeGramianMatrix().toBreeze.asInstanceOf[BDM[Double]] val brzSvd.SVD(uFull: BDM[Double], sigmaSquaresFull: BDV[Double], _) = brzSvd(G) (sigmaSquaresFull, uFull) From 859f7249a614c86fc1691cc3116463f85f33f153 Mon Sep 17 00:00:00 2001 From: Jacky Li Date: Sun, 1 Feb 2015 20:07:25 -0800 Subject: [PATCH 06/28] [SPARK-4001][MLlib] adding parallel FP-Growth algorithm for frequent pattern mining in MLlib Apriori is the classic algorithm for frequent item set mining in a transactional data set. It will be useful if Apriori algorithm is added to MLLib in Spark. This PR add an implementation for it. There is a point I am not sure wether it is most efficient. In order to filter out the eligible frequent item set, currently I am using a cartesian operation on two RDDs to calculate the degree of support of each item set, not sure wether it is better to use broadcast variable to achieve the same. I will add an example to use this algorithm if requires Author: Jacky Li Author: Jacky Li Author: Xiangrui Meng Closes #2847 from jackylk/apriori and squashes the following commits: bee3093 [Jacky Li] Merge pull request #1 from mengxr/SPARK-4001 7e69725 [Xiangrui Meng] simplify FPTree and update FPGrowth ec21f7d [Jacky Li] fix scalastyle 93f3280 [Jacky Li] create FPTree class d110ab2 [Jacky Li] change test case to use MLlibTestSparkContext a6c5081 [Jacky Li] Add Parallel FPGrowth algorithm eb3e4ca [Jacky Li] add FPGrowth 03df2b6 [Jacky Li] refactory according to comments 7b77ad7 [Jacky Li] fix scalastyle check f68a0bd [Jacky Li] add 2 apriori implemenation and fp-growth implementation 889b33f [Jacky Li] modify per scalastyle check da2cba7 [Jacky Li] adding apriori algorithm for frequent item set mining in Spark --- .../org/apache/spark/mllib/fpm/FPGrowth.scala | 162 ++++++++++++++++++ .../org/apache/spark/mllib/fpm/FPTree.scala | 134 +++++++++++++++ .../spark/mllib/fpm/FPGrowthSuite.scala | 73 ++++++++ .../apache/spark/mllib/fpm/FPTreeSuite.scala | 115 +++++++++++++ 4 files changed, 484 insertions(+) create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/fpm/FPTree.scala create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/fpm/FPTreeSuite.scala diff --git a/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala b/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala new file mode 100644 index 0000000000000..9591c7966e06a --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala @@ -0,0 +1,162 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.fpm + +import java.{util => ju} + +import scala.collection.mutable + +import org.apache.spark.{SparkException, HashPartitioner, Logging, Partitioner} +import org.apache.spark.rdd.RDD +import org.apache.spark.storage.StorageLevel + +class FPGrowthModel(val freqItemsets: RDD[(Array[String], Long)]) extends Serializable + +/** + * This class implements Parallel FP-growth algorithm to do frequent pattern matching on input data. + * Parallel FPGrowth (PFP) partitions computation in such a way that each machine executes an + * independent group of mining tasks. More detail of this algorithm can be found at + * [[http://dx.doi.org/10.1145/1454008.1454027, PFP]], and the original FP-growth paper can be + * found at [[http://dx.doi.org/10.1145/335191.335372, FP-growth]] + * + * @param minSupport the minimal support level of the frequent pattern, any pattern appears + * more than (minSupport * size-of-the-dataset) times will be output + * @param numPartitions number of partitions used by parallel FP-growth + */ +class FPGrowth private ( + private var minSupport: Double, + private var numPartitions: Int) extends Logging with Serializable { + + /** + * Constructs a FPGrowth instance with default parameters: + * {minSupport: 0.3, numPartitions: auto} + */ + def this() = this(0.3, -1) + + /** + * Sets the minimal support level (default: 0.3). + */ + def setMinSupport(minSupport: Double): this.type = { + this.minSupport = minSupport + this + } + + /** + * Sets the number of partitions used by parallel FP-growth (default: same as input data). + */ + def setNumPartitions(numPartitions: Int): this.type = { + this.numPartitions = numPartitions + this + } + + /** + * Computes an FP-Growth model that contains frequent itemsets. + * @param data input data set, each element contains a transaction + * @return an [[FPGrowthModel]] + */ + def run(data: RDD[Array[String]]): FPGrowthModel = { + if (data.getStorageLevel == StorageLevel.NONE) { + logWarning("Input data is not cached.") + } + val count = data.count() + val minCount = math.ceil(minSupport * count).toLong + val numParts = if (numPartitions > 0) numPartitions else data.partitions.length + val partitioner = new HashPartitioner(numParts) + val freqItems = genFreqItems(data, minCount, partitioner) + val freqItemsets = genFreqItemsets(data, minCount, freqItems, partitioner) + new FPGrowthModel(freqItemsets) + } + + /** + * Generates frequent items by filtering the input data using minimal support level. + * @param minCount minimum count for frequent itemsets + * @param partitioner partitioner used to distribute items + * @return array of frequent pattern ordered by their frequencies + */ + private def genFreqItems( + data: RDD[Array[String]], + minCount: Long, + partitioner: Partitioner): Array[String] = { + data.flatMap { t => + val uniq = t.toSet + if (t.length != uniq.size) { + throw new SparkException(s"Items in a transaction must be unique but got ${t.toSeq}.") + } + t + }.map(v => (v, 1L)) + .reduceByKey(partitioner, _ + _) + .filter(_._2 >= minCount) + .collect() + .sortBy(-_._2) + .map(_._1) + } + + /** + * Generate frequent itemsets by building FP-Trees, the extraction is done on each partition. + * @param data transactions + * @param minCount minimum count for frequent itemsets + * @param freqItems frequent items + * @param partitioner partitioner used to distribute transactions + * @return an RDD of (frequent itemset, count) + */ + private def genFreqItemsets( + data: RDD[Array[String]], + minCount: Long, + freqItems: Array[String], + partitioner: Partitioner): RDD[(Array[String], Long)] = { + val itemToRank = freqItems.zipWithIndex.toMap + data.flatMap { transaction => + genCondTransactions(transaction, itemToRank, partitioner) + }.aggregateByKey(new FPTree[Int], partitioner.numPartitions)( + (tree, transaction) => tree.add(transaction, 1L), + (tree1, tree2) => tree1.merge(tree2)) + .flatMap { case (part, tree) => + tree.extract(minCount, x => partitioner.getPartition(x) == part) + }.map { case (ranks, count) => + (ranks.map(i => freqItems(i)).toArray, count) + } + } + + /** + * Generates conditional transactions. + * @param transaction a transaction + * @param itemToRank map from item to their rank + * @param partitioner partitioner used to distribute transactions + * @return a map of (target partition, conditional transaction) + */ + private def genCondTransactions( + transaction: Array[String], + itemToRank: Map[String, Int], + partitioner: Partitioner): mutable.Map[Int, Array[Int]] = { + val output = mutable.Map.empty[Int, Array[Int]] + // Filter the basket by frequent items pattern and sort their ranks. + val filtered = transaction.flatMap(itemToRank.get) + ju.Arrays.sort(filtered) + val n = filtered.length + var i = n - 1 + while (i >= 0) { + val item = filtered(i) + val part = partitioner.getPartition(item) + if (!output.contains(part)) { + output(part) = filtered.slice(0, i + 1) + } + i -= 1 + } + output + } +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPTree.scala b/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPTree.scala new file mode 100644 index 0000000000000..1d2d777c00793 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPTree.scala @@ -0,0 +1,134 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.fpm + +import scala.collection.mutable +import scala.collection.mutable.ListBuffer + +/** + * FP-Tree data structure used in FP-Growth. + * @tparam T item type + */ +private[fpm] class FPTree[T] extends Serializable { + + import FPTree._ + + val root: Node[T] = new Node(null) + + private val summaries: mutable.Map[T, Summary[T]] = mutable.Map.empty + + /** Adds a transaction with count. */ + def add(t: Iterable[T], count: Long = 1L): this.type = { + require(count > 0) + var curr = root + curr.count += count + t.foreach { item => + val summary = summaries.getOrElseUpdate(item, new Summary) + summary.count += count + val child = curr.children.getOrElseUpdate(item, { + val newNode = new Node(curr) + newNode.item = item + summary.nodes += newNode + newNode + }) + child.count += count + curr = child + } + this + } + + /** Merges another FP-Tree. */ + def merge(other: FPTree[T]): this.type = { + other.transactions.foreach { case (t, c) => + add(t, c) + } + this + } + + /** Gets a subtree with the suffix. */ + private def project(suffix: T): FPTree[T] = { + val tree = new FPTree[T] + if (summaries.contains(suffix)) { + val summary = summaries(suffix) + summary.nodes.foreach { node => + var t = List.empty[T] + var curr = node.parent + while (!curr.isRoot) { + t = curr.item :: t + curr = curr.parent + } + tree.add(t, node.count) + } + } + tree + } + + /** Returns all transactions in an iterator. */ + def transactions: Iterator[(List[T], Long)] = getTransactions(root) + + /** Returns all transactions under this node. */ + private def getTransactions(node: Node[T]): Iterator[(List[T], Long)] = { + var count = node.count + node.children.iterator.flatMap { case (item, child) => + getTransactions(child).map { case (t, c) => + count -= c + (item :: t, c) + } + } ++ { + if (count > 0) { + Iterator.single((Nil, count)) + } else { + Iterator.empty + } + } + } + + /** Extracts all patterns with valid suffix and minimum count. */ + def extract( + minCount: Long, + validateSuffix: T => Boolean = _ => true): Iterator[(List[T], Long)] = { + summaries.iterator.flatMap { case (item, summary) => + if (validateSuffix(item) && summary.count >= minCount) { + Iterator.single((item :: Nil, summary.count)) ++ + project(item).extract(minCount).map { case (t, c) => + (item :: t, c) + } + } else { + Iterator.empty + } + } + } +} + +private[fpm] object FPTree { + + /** Representing a node in an FP-Tree. */ + class Node[T](val parent: Node[T]) extends Serializable { + var item: T = _ + var count: Long = 0L + val children: mutable.Map[T, Node[T]] = mutable.Map.empty + + def isRoot: Boolean = parent == null + } + + /** Summary of a item in an FP-Tree. */ + private class Summary[T] extends Serializable { + var count: Long = 0L + val nodes: ListBuffer[Node[T]] = ListBuffer.empty + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala new file mode 100644 index 0000000000000..71ef60da6dd32 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala @@ -0,0 +1,73 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.mllib.fpm + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.util.MLlibTestSparkContext + +class FPGrowthSuite extends FunSuite with MLlibTestSparkContext { + + test("FP-Growth") { + val transactions = Seq( + "r z h k p", + "z y x w v u t s", + "s x o n r", + "x z y m t s q e", + "z", + "x z y r q t p") + .map(_.split(" ")) + val rdd = sc.parallelize(transactions, 2).cache() + + val fpg = new FPGrowth() + + val model6 = fpg + .setMinSupport(0.9) + .setNumPartitions(1) + .run(rdd) + assert(model6.freqItemsets.count() === 0) + + val model3 = fpg + .setMinSupport(0.5) + .setNumPartitions(2) + .run(rdd) + val freqItemsets3 = model3.freqItemsets.collect().map { case (items, count) => + (items.toSet, count) + } + val expected = Set( + (Set("s"), 3L), (Set("z"), 5L), (Set("x"), 4L), (Set("t"), 3L), (Set("y"), 3L), + (Set("r"), 3L), + (Set("x", "z"), 3L), (Set("t", "y"), 3L), (Set("t", "x"), 3L), (Set("s", "x"), 3L), + (Set("y", "x"), 3L), (Set("y", "z"), 3L), (Set("t", "z"), 3L), + (Set("y", "x", "z"), 3L), (Set("t", "x", "z"), 3L), (Set("t", "y", "z"), 3L), + (Set("t", "y", "x"), 3L), + (Set("t", "y", "x", "z"), 3L)) + assert(freqItemsets3.toSet === expected) + + val model2 = fpg + .setMinSupport(0.3) + .setNumPartitions(4) + .run(rdd) + assert(model2.freqItemsets.count() === 54) + + val model1 = fpg + .setMinSupport(0.1) + .setNumPartitions(8) + .run(rdd) + assert(model1.freqItemsets.count() === 625) + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPTreeSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPTreeSuite.scala new file mode 100644 index 0000000000000..04017f67c311d --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPTreeSuite.scala @@ -0,0 +1,115 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.fpm + +import scala.language.existentials + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.util.MLlibTestSparkContext + +class FPTreeSuite extends FunSuite with MLlibTestSparkContext { + + test("add transaction") { + val tree = new FPTree[String] + .add(Seq("a", "b", "c")) + .add(Seq("a", "b", "y")) + .add(Seq("b")) + + assert(tree.root.children.size == 2) + assert(tree.root.children.contains("a")) + assert(tree.root.children("a").item.equals("a")) + assert(tree.root.children("a").count == 2) + assert(tree.root.children.contains("b")) + assert(tree.root.children("b").item.equals("b")) + assert(tree.root.children("b").count == 1) + var child = tree.root.children("a") + assert(child.children.size == 1) + assert(child.children.contains("b")) + assert(child.children("b").item.equals("b")) + assert(child.children("b").count == 2) + child = child.children("b") + assert(child.children.size == 2) + assert(child.children.contains("c")) + assert(child.children.contains("y")) + assert(child.children("c").item.equals("c")) + assert(child.children("y").item.equals("y")) + assert(child.children("c").count == 1) + assert(child.children("y").count == 1) + } + + test("merge tree") { + val tree1 = new FPTree[String] + .add(Seq("a", "b", "c")) + .add(Seq("a", "b", "y")) + .add(Seq("b")) + + val tree2 = new FPTree[String] + .add(Seq("a", "b")) + .add(Seq("a", "b", "c")) + .add(Seq("a", "b", "c", "d")) + .add(Seq("a", "x")) + .add(Seq("a", "x", "y")) + .add(Seq("c", "n")) + .add(Seq("c", "m")) + + val tree3 = tree1.merge(tree2) + + assert(tree3.root.children.size == 3) + assert(tree3.root.children("a").count == 7) + assert(tree3.root.children("b").count == 1) + assert(tree3.root.children("c").count == 2) + val child1 = tree3.root.children("a") + assert(child1.children.size == 2) + assert(child1.children("b").count == 5) + assert(child1.children("x").count == 2) + val child2 = child1.children("b") + assert(child2.children.size == 2) + assert(child2.children("y").count == 1) + assert(child2.children("c").count == 3) + val child3 = child2.children("c") + assert(child3.children.size == 1) + assert(child3.children("d").count == 1) + val child4 = child1.children("x") + assert(child4.children.size == 1) + assert(child4.children("y").count == 1) + val child5 = tree3.root.children("c") + assert(child5.children.size == 2) + assert(child5.children("n").count == 1) + assert(child5.children("m").count == 1) + } + + test("extract freq itemsets") { + val tree = new FPTree[String] + .add(Seq("a", "b", "c")) + .add(Seq("a", "b", "y")) + .add(Seq("a", "b")) + .add(Seq("a")) + .add(Seq("b")) + .add(Seq("b", "n")) + + val freqItemsets = tree.extract(3L).map { case (items, count) => + (items.toSet, count) + }.toSet + val expected = Set( + (Set("a"), 4L), + (Set("b"), 5L), + (Set("a", "b"), 3L)) + assert(freqItemsets === expected) + } +} From a15f6e31fc216d0d39bc1578e0da11b068b7821c Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Sun, 1 Feb 2015 21:13:57 -0800 Subject: [PATCH 07/28] [SPARK-3996]: Shade Jetty in Spark deliverables (v2 of this patch with a fix that was only relevant for the maven build). This patch piggy-back's on vanzin's work to simplify the Guava shading, and adds Jetty as a shaded library in Spark. Other than adding Jetty, it consilidates the 's into the root pom. I found it was a bit easier to follow that way, since you don't need to look into child pom's to find out specific artifact sets included in shading. Author: Patrick Wendell Closes #4285 from pwendell/jetty and squashes the following commits: d3e7f4e [Patrick Wendell] Fix for shaded deps causing compile errors 19f0710 [Patrick Wendell] More code review feedback 961452d [Patrick Wendell] Responding to feedback from Marcello 6df25ca [Patrick Wendell] [WIP] [SPARK-3996]: Shade Jetty in Spark deliverables --- bin/compute-classpath.sh | 4 +++- core/pom.xml | 22 ++++++++++++++++++++-- network/common/pom.xml | 12 ------------ pom.xml | 32 ++++++++++++++++++++++++++++++++ repl/pom.xml | 24 ++++++++++++++++++++++++ streaming/pom.xml | 16 ++++++++++++++++ 6 files changed, 95 insertions(+), 15 deletions(-) diff --git a/bin/compute-classpath.sh b/bin/compute-classpath.sh index 9e8d0b785194e..a8c344b1ca594 100755 --- a/bin/compute-classpath.sh +++ b/bin/compute-classpath.sh @@ -50,8 +50,8 @@ fi if [ -n "$SPARK_PREPEND_CLASSES" ]; then echo "NOTE: SPARK_PREPEND_CLASSES is set, placing locally compiled Spark"\ "classes ahead of assembly." >&2 + # Spark classes CLASSPATH="$CLASSPATH:$FWDIR/core/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/core/target/jars/*" CLASSPATH="$CLASSPATH:$FWDIR/repl/target/scala-$SPARK_SCALA_VERSION/classes" CLASSPATH="$CLASSPATH:$FWDIR/mllib/target/scala-$SPARK_SCALA_VERSION/classes" CLASSPATH="$CLASSPATH:$FWDIR/bagel/target/scala-$SPARK_SCALA_VERSION/classes" @@ -63,6 +63,8 @@ if [ -n "$SPARK_PREPEND_CLASSES" ]; then CLASSPATH="$CLASSPATH:$FWDIR/sql/hive/target/scala-$SPARK_SCALA_VERSION/classes" CLASSPATH="$CLASSPATH:$FWDIR/sql/hive-thriftserver/target/scala-$SPARK_SCALA_VERSION/classes" CLASSPATH="$CLASSPATH:$FWDIR/yarn/stable/target/scala-$SPARK_SCALA_VERSION/classes" + # Jars for shaded deps in their original form (copied here during build) + CLASSPATH="$CLASSPATH:$FWDIR/core/target/jars/*" fi # Use spark-assembly jar from either RELEASE or assembly directory diff --git a/core/pom.xml b/core/pom.xml index 6fce10a0aea4c..4d24ae93c4ae3 100644 --- a/core/pom.xml +++ b/core/pom.xml @@ -94,22 +94,35 @@ org.apache.curator curator-recipes + + org.eclipse.jetty jetty-plus + compile org.eclipse.jetty jetty-security + compile org.eclipse.jetty jetty-util + compile org.eclipse.jetty jetty-server + compile + + org.eclipse.jetty + jetty-http + compile + + org.apache.commons commons-lang3 @@ -348,19 +361,24 @@ org.apache.maven.plugins maven-dependency-plugin + copy-dependencies package copy-dependencies - + ${project.build.directory} false false true true - guava + + guava,jetty-io,jetty-http,jetty-plus,jetty-util,jetty-server + true diff --git a/network/common/pom.xml b/network/common/pom.xml index 5a9bbe105d9f1..8f7c924d6b3a3 100644 --- a/network/common/pom.xml +++ b/network/common/pom.xml @@ -101,18 +101,6 @@ - - org.apache.maven.plugins - maven-shade-plugin - - false - - - com.google.guava:guava - - - - diff --git a/pom.xml b/pom.xml index b855f2371b7f0..d4112b03d9ee4 100644 --- a/pom.xml +++ b/pom.xml @@ -337,25 +337,39 @@ + + + + org.eclipse.jetty + jetty-http + ${jetty.version} + provided + org.eclipse.jetty jetty-util ${jetty.version} + provided org.eclipse.jetty jetty-security ${jetty.version} + provided org.eclipse.jetty jetty-plus ${jetty.version} + provided org.eclipse.jetty jetty-server ${jetty.version} + provided com.google.guava @@ -363,6 +377,8 @@ 14.0.1 provided + + org.apache.commons commons-lang3 @@ -1276,10 +1292,26 @@ false + org.spark-project.spark:unused + + org.eclipse.jetty:jetty-io + org.eclipse.jetty:jetty-http + org.eclipse.jetty:jetty-plus + org.eclipse.jetty:jetty-security + org.eclipse.jetty:jetty-util + org.eclipse.jetty:jetty-server + com.google.guava:guava + + org.eclipse.jetty + org.spark-project.jetty + + org.eclipse.jetty.** + + com.google.common org.spark-project.guava diff --git a/repl/pom.xml b/repl/pom.xml index ae7c31aef4f5f..bd39b90fd8714 100644 --- a/repl/pom.xml +++ b/repl/pom.xml @@ -87,6 +87,30 @@ scalacheck_${scala.binary.version} test + + + + org.eclipse.jetty + jetty-server + + + org.eclipse.jetty + jetty-plus + + + org.eclipse.jetty + jetty-util + + + org.eclipse.jetty + jetty-http + + + + + org.scala-lang + scala-library + target/scala-${scala.binary.version}/classes diff --git a/streaming/pom.xml b/streaming/pom.xml index d032491e2ff83..5efed16039339 100644 --- a/streaming/pom.xml +++ b/streaming/pom.xml @@ -40,6 +40,8 @@ spark-core_${scala.binary.version} ${project.version} + + com.google.guava guava @@ -48,6 +50,20 @@ org.eclipse.jetty jetty-server + + org.eclipse.jetty + jetty-plus + + + org.eclipse.jetty + jetty-util + + + org.eclipse.jetty + jetty-http + + + org.scala-lang scala-library From 9f0a6e1838f62845f2a02d82cde16401e48aef4a Mon Sep 17 00:00:00 2001 From: Tobias Schlatter Date: Sun, 1 Feb 2015 21:43:49 -0800 Subject: [PATCH 08/28] [SPARK-5353] Log failures in REPL class loading Author: Tobias Schlatter Closes #4130 from gzm0/log-repl-loading and squashes the following commits: 4fa0582 [Tobias Schlatter] Log failures in REPL class loading --- .../apache/spark/repl/ExecutorClassLoader.scala | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala b/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala index 5ee325008a5cd..b46df12da86dc 100644 --- a/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala +++ b/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala @@ -17,13 +17,13 @@ package org.apache.spark.repl -import java.io.{ByteArrayOutputStream, InputStream} +import java.io.{ByteArrayOutputStream, InputStream, FileNotFoundException} import java.net.{URI, URL, URLEncoder} import java.util.concurrent.{Executors, ExecutorService} import org.apache.hadoop.fs.{FileSystem, Path} -import org.apache.spark.{SparkConf, SparkEnv} +import org.apache.spark.{SparkConf, SparkEnv, Logging} import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.util.Utils import org.apache.spark.util.ParentClassLoader @@ -37,7 +37,7 @@ import com.esotericsoftware.reflectasm.shaded.org.objectweb.asm.Opcodes._ * Allows the user to specify if user class path should be first */ class ExecutorClassLoader(conf: SparkConf, classUri: String, parent: ClassLoader, - userClassPathFirst: Boolean) extends ClassLoader { + userClassPathFirst: Boolean) extends ClassLoader with Logging { val uri = new URI(classUri) val directory = uri.getPath @@ -91,7 +91,14 @@ class ExecutorClassLoader(conf: SparkConf, classUri: String, parent: ClassLoader inputStream.close() Some(defineClass(name, bytes, 0, bytes.length)) } catch { - case e: Exception => None + case e: FileNotFoundException => + // We did not find the class + logDebug(s"Did not load class $name from REPL class server at $uri", e) + None + case e: Exception => + // Something bad happened while checking if the class exists + logError(s"Failed to check existence of class $name on REPL class server at $uri", e) + None } } From 63dfe21dc7743e6ebb431157eb2410a39a6c64e3 Mon Sep 17 00:00:00 2001 From: jerryshao Date: Sun, 1 Feb 2015 23:56:13 -0800 Subject: [PATCH 09/28] [SPARK-5478][UI][Minor] Add missing right parentheses ![UI](https://dl.dropboxusercontent.com/u/19230832/Capture.PNG) Author: jerryshao Closes #4267 from jerryshao/SPARK-5478 and squashes the following commits: 9fe51cc [jerryshao] Add missing right parentheses --- .../src/main/scala/org/apache/spark/ui/jobs/AllStagesPage.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/ui/jobs/AllStagesPage.scala b/core/src/main/scala/org/apache/spark/ui/jobs/AllStagesPage.scala index 479f967fb1541..527f960af2dfc 100644 --- a/core/src/main/scala/org/apache/spark/ui/jobs/AllStagesPage.scala +++ b/core/src/main/scala/org/apache/spark/ui/jobs/AllStagesPage.scala @@ -128,7 +128,7 @@ private[ui] class AllStagesPage(parent: StagesTab) extends WebUIPage("") { activeStagesTable.toNodeSeq } if (shouldShowPendingStages) { - content ++=

Pending Stages ({pendingStages.size}

++ + content ++=

Pending Stages ({pendingStages.size})

++ pendingStagesTable.toNodeSeq } if (shouldShowCompletedStages) { From 6f341310bf1fa59a28c96d123fa59e12b9366b68 Mon Sep 17 00:00:00 2001 From: Sandy Ryza Date: Mon, 2 Feb 2015 00:54:06 -0800 Subject: [PATCH 10/28] SPARK-5492. Thread statistics can break with older Hadoop versions Author: Sandy Ryza Closes #4305 from sryza/sandy-spark-5492 and squashes the following commits: b7d4497 [Sandy Ryza] SPARK-5492. Thread statistics can break with older Hadoop versions --- .../main/scala/org/apache/spark/deploy/SparkHadoopUtil.scala | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkHadoopUtil.scala b/core/src/main/scala/org/apache/spark/deploy/SparkHadoopUtil.scala index 211e3ede53d9c..d68854214ef06 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkHadoopUtil.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkHadoopUtil.scala @@ -141,7 +141,7 @@ class SparkHadoopUtil extends Logging { val baselineBytesRead = f() Some(() => f() - baselineBytesRead) } catch { - case e: NoSuchMethodException => { + case e @ (_: NoSuchMethodException | _: ClassNotFoundException) => { logDebug("Couldn't find method for retrieving thread-level FileSystem input data", e) None } @@ -163,7 +163,7 @@ class SparkHadoopUtil extends Logging { val baselineBytesWritten = f() Some(() => f() - baselineBytesWritten) } catch { - case e: NoSuchMethodException => { + case e @ (_: NoSuchMethodException | _: ClassNotFoundException) => { logDebug("Couldn't find method for retrieving thread-level FileSystem output data", e) None } From c081b21b1fe4fbad845088c4144da0bd2a8d89dc Mon Sep 17 00:00:00 2001 From: Alexander Ulanov Date: Mon, 2 Feb 2015 12:13:05 -0800 Subject: [PATCH 11/28] [MLLIB] SPARK-5491 (ex SPARK-1473): Chi-square feature selection The following is implemented: 1) generic traits for feature selection and filtering 2) trait for feature selection of LabeledPoint with discrete data 3) traits for calculation of contingency table and chi squared 4) class for chi-squared feature selection 5) tests for the above Needs some optimization in matrix operations. This request is a try to implement feature selection for MLLIB, the previous work by the issue author izendejas was not finished (https://issues.apache.org/jira/browse/SPARK-1473). This request is also related to data discretization issues: https://issues.apache.org/jira/browse/SPARK-1303 and https://issues.apache.org/jira/browse/SPARK-1216 that weren't merged. Author: Alexander Ulanov Closes #1484 from avulanov/featureselection and squashes the following commits: 755d358 [Alexander Ulanov] Addressing reviewers comments @mengxr a6ad82a [Alexander Ulanov] Addressing reviewers comments @mengxr 714b878 [Alexander Ulanov] Addressing reviewers comments @mengxr 010acff [Alexander Ulanov] Rebase 427ca4e [Alexander Ulanov] Addressing reviewers comments: implement VectorTransformer interface, use Statistics.chiSqTest f9b070a [Alexander Ulanov] Adding Apache header in tests... 80363ca [Alexander Ulanov] Tests, comments, apache headers and scala style 150a3e0 [Alexander Ulanov] Scala style fix f356365 [Alexander Ulanov] Chi Squared by contingency table. Refactoring 2bacdc7 [Alexander Ulanov] Combinations and chi-squared values test 66e0333 [Alexander Ulanov] Feature selector, fix of lazyness aab9b73 [Alexander Ulanov] Feature selection redesign with vigdorchik e24eee4 [Alexander Ulanov] Traits for FeatureSelection, CombinationsCalculator and FeatureFilter ca49e80 [Alexander Ulanov] Feature selection filter 2ade254 [Alexander Ulanov] Code style 0bd8434 [Alexander Ulanov] Chi Squared feature selection: initial version --- .../spark/mllib/feature/ChiSqSelector.scala | 127 ++++++++++++++++++ .../mllib/feature/ChiSqSelectorSuite.scala | 67 +++++++++ 2 files changed, 194 insertions(+) create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala diff --git a/mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala b/mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala new file mode 100644 index 0000000000000..c6057c7f837b1 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala @@ -0,0 +1,127 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.feature + +import scala.collection.mutable.ArrayBuilder + +import org.apache.spark.annotation.Experimental +import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors} +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.stat.Statistics +import org.apache.spark.rdd.RDD + +/** + * :: Experimental :: + * Chi Squared selector model. + * + * @param selectedFeatures list of indices to select (filter). Must be ordered asc + */ +@Experimental +class ChiSqSelectorModel (val selectedFeatures: Array[Int]) extends VectorTransformer { + + require(isSorted(selectedFeatures), "Array has to be sorted asc") + + protected def isSorted(array: Array[Int]): Boolean = { + var i = 1 + while (i < array.length) { + if (array(i) < array(i-1)) return false + i += 1 + } + true + } + + /** + * Applies transformation on a vector. + * + * @param vector vector to be transformed. + * @return transformed vector. + */ + override def transform(vector: Vector): Vector = { + compress(vector, selectedFeatures) + } + + /** + * Returns a vector with features filtered. + * Preserves the order of filtered features the same as their indices are stored. + * Might be moved to Vector as .slice + * @param features vector + * @param filterIndices indices of features to filter, must be ordered asc + */ + private def compress(features: Vector, filterIndices: Array[Int]): Vector = { + features match { + case SparseVector(size, indices, values) => + val newSize = filterIndices.length + val newValues = new ArrayBuilder.ofDouble + val newIndices = new ArrayBuilder.ofInt + var i = 0 + var j = 0 + var indicesIdx = 0 + var filterIndicesIdx = 0 + while (i < indices.length && j < filterIndices.length) { + indicesIdx = indices(i) + filterIndicesIdx = filterIndices(j) + if (indicesIdx == filterIndicesIdx) { + newIndices += j + newValues += values(i) + j += 1 + i += 1 + } else { + if (indicesIdx > filterIndicesIdx) { + j += 1 + } else { + i += 1 + } + } + } + // TODO: Sparse representation might be ineffective if (newSize ~= newValues.size) + Vectors.sparse(newSize, newIndices.result(), newValues.result()) + case DenseVector(values) => + val values = features.toArray + Vectors.dense(filterIndices.map(i => values(i))) + case other => + throw new UnsupportedOperationException( + s"Only sparse and dense vectors are supported but got ${other.getClass}.") + } + } +} + +/** + * :: Experimental :: + * Creates a ChiSquared feature selector. + * @param numTopFeatures number of features that selector will select + * (ordered by statistic value descending) + */ +@Experimental +class ChiSqSelector (val numTopFeatures: Int) { + + /** + * Returns a ChiSquared feature selector. + * + * @param data an `RDD[LabeledPoint]` containing the labeled dataset with categorical features. + * Real-valued features will be treated as categorical for each distinct value. + * Apply feature discretizer before using this function. + */ + def fit(data: RDD[LabeledPoint]): ChiSqSelectorModel = { + val indices = Statistics.chiSqTest(data) + .zipWithIndex.sortBy { case (res, _) => -res.statistic } + .take(numTopFeatures) + .map { case (_, indices) => indices } + .sorted + new ChiSqSelectorModel(indices) + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala new file mode 100644 index 0000000000000..747f5914598ec --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala @@ -0,0 +1,67 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.feature + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.util.MLlibTestSparkContext + +class ChiSqSelectorSuite extends FunSuite with MLlibTestSparkContext { + + /* + * Contingency tables + * feature0 = {8.0, 0.0} + * class 0 1 2 + * 8.0||1|0|1| + * 0.0||0|2|0| + * + * feature1 = {7.0, 9.0} + * class 0 1 2 + * 7.0||1|0|0| + * 9.0||0|2|1| + * + * feature2 = {0.0, 6.0, 8.0, 5.0} + * class 0 1 2 + * 0.0||1|0|0| + * 6.0||0|1|0| + * 8.0||0|1|0| + * 5.0||0|0|1| + * + * Use chi-squared calculator from Internet + */ + + test("ChiSqSelector transform test (sparse & dense vector)") { + val labeledDiscreteData = sc.parallelize( + Seq(LabeledPoint(0.0, Vectors.sparse(3, Array((0, 8.0), (1, 7.0)))), + LabeledPoint(1.0, Vectors.sparse(3, Array((1, 9.0), (2, 6.0)))), + LabeledPoint(1.0, Vectors.dense(Array(0.0, 9.0, 8.0))), + LabeledPoint(2.0, Vectors.dense(Array(8.0, 9.0, 5.0)))), 2) + val preFilteredData = + Set(LabeledPoint(0.0, Vectors.dense(Array(0.0))), + LabeledPoint(1.0, Vectors.dense(Array(6.0))), + LabeledPoint(1.0, Vectors.dense(Array(8.0))), + LabeledPoint(2.0, Vectors.dense(Array(5.0)))) + val model = new ChiSqSelector(1).fit(labeledDiscreteData) + val filteredData = labeledDiscreteData.map { lp => + LabeledPoint(lp.label, model.transform(lp.features)) + }.collect().toSet + assert(filteredData == preFilteredData) + } +} From b2047b55c5fc85de6b63276d8ab9610d2496e08b Mon Sep 17 00:00:00 2001 From: Sandy Ryza Date: Mon, 2 Feb 2015 12:27:08 -0800 Subject: [PATCH 12/28] SPARK-4585. Spark dynamic executor allocation should use minExecutors as... ... initial number Author: Sandy Ryza Closes #4051 from sryza/sandy-spark-4585 and squashes the following commits: d1dd039 [Sandy Ryza] Add spark.dynamicAllocation.initialNumExecutors and make min and max not required b7c59dc [Sandy Ryza] SPARK-4585. Spark dynamic executor allocation should use minExecutors as initial number --- .../spark/ExecutorAllocationManager.scala | 14 +++++++------ .../ExecutorAllocationManagerSuite.scala | 15 +++++++------- docs/configuration.md | 20 +++++++++++++------ docs/job-scheduling.md | 9 ++++----- .../spark/deploy/yarn/ClientArguments.scala | 17 ++++++++++++---- 5 files changed, 46 insertions(+), 29 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala b/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala index b28da192c1c0d..5d5288bb6e60d 100644 --- a/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala +++ b/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala @@ -49,6 +49,7 @@ import org.apache.spark.scheduler._ * spark.dynamicAllocation.enabled - Whether this feature is enabled * spark.dynamicAllocation.minExecutors - Lower bound on the number of executors * spark.dynamicAllocation.maxExecutors - Upper bound on the number of executors + * spark.dynamicAllocation.initialExecutors - Number of executors to start with * * spark.dynamicAllocation.schedulerBacklogTimeout (M) - * If there are backlogged tasks for this duration, add new executors @@ -70,9 +71,10 @@ private[spark] class ExecutorAllocationManager( import ExecutorAllocationManager._ - // Lower and upper bounds on the number of executors. These are required. - private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", -1) - private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors", -1) + // Lower and upper bounds on the number of executors. + private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0) + private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors", + Integer.MAX_VALUE) // How long there must be backlogged tasks for before an addition is triggered private val schedulerBacklogTimeout = conf.getLong( @@ -132,10 +134,10 @@ private[spark] class ExecutorAllocationManager( */ private def validateSettings(): Unit = { if (minNumExecutors < 0 || maxNumExecutors < 0) { - throw new SparkException("spark.dynamicAllocation.{min/max}Executors must be set!") + throw new SparkException("spark.dynamicAllocation.{min/max}Executors must be positive!") } - if (minNumExecutors == 0 || maxNumExecutors == 0) { - throw new SparkException("spark.dynamicAllocation.{min/max}Executors cannot be 0!") + if (maxNumExecutors == 0) { + throw new SparkException("spark.dynamicAllocation.maxExecutors cannot be 0!") } if (minNumExecutors > maxNumExecutors) { throw new SparkException(s"spark.dynamicAllocation.minExecutors ($minNumExecutors) must " + diff --git a/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala b/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala index 0e4df17c1bf87..57081ddd959a5 100644 --- a/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala +++ b/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala @@ -32,24 +32,23 @@ class ExecutorAllocationManagerSuite extends FunSuite with LocalSparkContext { import ExecutorAllocationManagerSuite._ test("verify min/max executors") { - // No min or max val conf = new SparkConf() .setMaster("local") .setAppName("test-executor-allocation-manager") .set("spark.dynamicAllocation.enabled", "true") .set("spark.dynamicAllocation.testing", "true") - intercept[SparkException] { new SparkContext(conf) } - SparkEnv.get.stop() // cleanup the created environment - SparkContext.clearActiveContext() + val sc0 = new SparkContext(conf) + assert(sc0.executorAllocationManager.isDefined) + sc0.stop() - // Only min - val conf1 = conf.clone().set("spark.dynamicAllocation.minExecutors", "1") + // Min < 0 + val conf1 = conf.clone().set("spark.dynamicAllocation.minExecutors", "-1") intercept[SparkException] { new SparkContext(conf1) } SparkEnv.get.stop() SparkContext.clearActiveContext() - // Only max - val conf2 = conf.clone().set("spark.dynamicAllocation.maxExecutors", "2") + // Max < 0 + val conf2 = conf.clone().set("spark.dynamicAllocation.maxExecutors", "-1") intercept[SparkException] { new SparkContext(conf2) } SparkEnv.get.stop() SparkContext.clearActiveContext() diff --git a/docs/configuration.md b/docs/configuration.md index e4e4b8d516b75..08c6befaf31ad 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -1098,24 +1098,32 @@ Apart from these, the following properties are also available, and may be useful available on YARN mode. For more detail, see the description here.

- This requires the following configurations to be set: + This requires spark.shuffle.service.enabled to be set. + The following configurations are also relevant: spark.dynamicAllocation.minExecutors, spark.dynamicAllocation.maxExecutors, and - spark.shuffle.service.enabled + spark.dynamicAllocation.initialExecutors spark.dynamicAllocation.minExecutors - (none) + 0 - Lower bound for the number of executors if dynamic allocation is enabled (required). + Lower bound for the number of executors if dynamic allocation is enabled. spark.dynamicAllocation.maxExecutors - (none) + Integer.MAX_VALUE + + Upper bound for the number of executors if dynamic allocation is enabled. + + + + spark.dynamicAllocation.maxExecutors + spark.dynamicAllocation.minExecutors - Upper bound for the number of executors if dynamic allocation is enabled (required). + Initial number of executors to run if dynamic allocation is enabled. diff --git a/docs/job-scheduling.md b/docs/job-scheduling.md index a5425eb3557b2..5295e351dd711 100644 --- a/docs/job-scheduling.md +++ b/docs/job-scheduling.md @@ -77,11 +77,10 @@ scheduling while sharing cluster resources efficiently. ### Configuration and Setup All configurations used by this feature live under the `spark.dynamicAllocation.*` namespace. -To enable this feature, your application must set `spark.dynamicAllocation.enabled` to `true` and -provide lower and upper bounds for the number of executors through -`spark.dynamicAllocation.minExecutors` and `spark.dynamicAllocation.maxExecutors`. Other relevant -configurations are described on the [configurations page](configuration.html#dynamic-allocation) -and in the subsequent sections in detail. +To enable this feature, your application must set `spark.dynamicAllocation.enabled` to `true`. +Other relevant configurations are described on the +[configurations page](configuration.html#dynamic-allocation) and in the subsequent sections in +detail. Additionally, your application must use an external shuffle service. The purpose of the service is to preserve the shuffle files written by executors so the executors can be safely removed (more diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala index f96b245512271..5eb2023802dfc 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala @@ -75,14 +75,23 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) .orElse(sparkConf.getOption("spark.yarn.dist.archives").map(p => Utils.resolveURIs(p))) .orElse(sys.env.get("SPARK_YARN_DIST_ARCHIVES")) .orNull - // If dynamic allocation is enabled, start at the max number of executors + // If dynamic allocation is enabled, start at the configured initial number of executors. + // Default to minExecutors if no initialExecutors is set. if (isDynamicAllocationEnabled) { + val minExecutorsConf = "spark.dynamicAllocation.minExecutors" + val initialExecutorsConf = "spark.dynamicAllocation.initialExecutors" val maxExecutorsConf = "spark.dynamicAllocation.maxExecutors" - if (!sparkConf.contains(maxExecutorsConf)) { + val minNumExecutors = sparkConf.getInt(minExecutorsConf, 0) + val initialNumExecutors = sparkConf.getInt(initialExecutorsConf, minNumExecutors) + val maxNumExecutors = sparkConf.getInt(maxExecutorsConf, Integer.MAX_VALUE) + + // If defined, initial executors must be between min and max + if (initialNumExecutors < minNumExecutors || initialNumExecutors > maxNumExecutors) { throw new IllegalArgumentException( - s"$maxExecutorsConf must be set if dynamic allocation is enabled!") + s"$initialExecutorsConf must be between $minExecutorsConf and $maxNumExecutors!") } - numExecutors = sparkConf.get(maxExecutorsConf).toInt + + numExecutors = initialNumExecutors } } From f5e63751f0ed50ceafdc2ec5173b161a5155b646 Mon Sep 17 00:00:00 2001 From: lianhuiwang Date: Mon, 2 Feb 2015 12:32:28 -0800 Subject: [PATCH 13/28] [SPARK-5173]support python application running on yarn cluster mode now when we run python application on yarn cluster mode through spark-submit, spark-submit does not support python application on yarn cluster mode. so i modify code of submit and yarn's AM in order to support it. through specifying .py file or primaryResource file via spark-submit, we can make pyspark run in yarn-cluster mode. example:spark-submit --master yarn-master --num-executors 1 --driver-memory 1g --executor-memory 1g xx.py --primaryResource yy.conf this config is same as pyspark on yarn-client mode. firstly,we put local path of .py or primaryResource to yarn's dist.files.that can be distributed on slave nodes.and then in spark-submit we transfer --py-files and --primaryResource to yarn.Client and use "org.apache.spark.deploy.PythonRunner" to user class that can run .py files on ApplicationMaster. in yarn.Client we transfer --py-files and --primaryResource to ApplicationMaster. in ApplicationMaster, user's class is org.apache.spark.deploy.PythonRunner, and user's args is primaryResource and -py-files. so that can make pyspark run on ApplicationMaster. JoshRosen tgravescs sryza Author: lianhuiwang Author: Wang Lianhui Closes #3976 from lianhuiwang/SPARK-5173 and squashes the following commits: 28a8a58 [lianhuiwang] fix variable name 67f8cee [lianhuiwang] update with andrewor's comments 0319ae3 [lianhuiwang] address with sryza's comments 2385ef6 [lianhuiwang] address with sryza's comments 03640ab [lianhuiwang] add sparkHome to env 47d2fc3 [lianhuiwang] fix test 2adc8f5 [lianhuiwang] add spark.test.home d60bc60 [lianhuiwang] fix test 5b30064 [lianhuiwang] add test 097a5ec [lianhuiwang] fix line length exceeds 100 905a106 [lianhuiwang] update with sryza and andrewor 's comments f1f55b6 [lianhuiwang] when yarn-cluster, all python files can be non-local 172eec1 [Wang Lianhui] fix a min submit's bug 9c941bc [lianhuiwang] support python application running on yarn cluster mode --- .../apache/spark/deploy/PythonRunner.scala | 2 +- .../org/apache/spark/deploy/SparkSubmit.scala | 49 ++++++++++++++++--- .../spark/deploy/SparkSubmitArguments.scala | 12 ----- .../spark/deploy/yarn/ApplicationMaster.scala | 14 ++++-- .../yarn/ApplicationMasterArguments.scala | 13 +++++ .../org/apache/spark/deploy/yarn/Client.scala | 19 ++++++- .../spark/deploy/yarn/ClientArguments.scala | 20 ++++++-- .../spark/deploy/yarn/YarnClusterSuite.scala | 44 +++++++++++++++++ 8 files changed, 141 insertions(+), 32 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala index 039c8719e2867..53e18c4bcec23 100644 --- a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala +++ b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala @@ -26,7 +26,7 @@ import org.apache.spark.api.python.PythonUtils import org.apache.spark.util.{RedirectThread, Utils} /** - * A main class used by spark-submit to launch Python applications. It executes python as a + * A main class used to launch Python applications. It executes python as a * subprocess and then has it connect back to the JVM to access system properties, etc. */ object PythonRunner { diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala index c240bcd705d93..02021be9f93d4 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala @@ -23,6 +23,8 @@ import java.net.URL import scala.collection.mutable.{ArrayBuffer, HashMap, Map} +import org.apache.hadoop.fs.Path + import org.apache.spark.executor.ExecutorURLClassLoader import org.apache.spark.util.Utils @@ -134,12 +136,27 @@ object SparkSubmit { } } + val isYarnCluster = clusterManager == YARN && deployMode == CLUSTER + + // Require all python files to be local, so we can add them to the PYTHONPATH + // In YARN cluster mode, python files are distributed as regular files, which can be non-local + if (args.isPython && !isYarnCluster) { + if (Utils.nonLocalPaths(args.primaryResource).nonEmpty) { + printErrorAndExit(s"Only local python files are supported: $args.primaryResource") + } + val nonLocalPyFiles = Utils.nonLocalPaths(args.pyFiles).mkString(",") + if (nonLocalPyFiles.nonEmpty) { + printErrorAndExit(s"Only local additional python files are supported: $nonLocalPyFiles") + } + } + // The following modes are not supported or applicable (clusterManager, deployMode) match { case (MESOS, CLUSTER) => printErrorAndExit("Cluster deploy mode is currently not supported for Mesos clusters.") - case (_, CLUSTER) if args.isPython => - printErrorAndExit("Cluster deploy mode is currently not supported for python applications.") + case (STANDALONE, CLUSTER) if args.isPython => + printErrorAndExit("Cluster deploy mode is currently not supported for python " + + "applications on standalone clusters.") case (_, CLUSTER) if isShell(args.primaryResource) => printErrorAndExit("Cluster deploy mode is not applicable to Spark shells.") case (_, CLUSTER) if isSqlShell(args.mainClass) => @@ -150,7 +167,7 @@ object SparkSubmit { } // If we're running a python app, set the main class to our specific python runner - if (args.isPython) { + if (args.isPython && deployMode == CLIENT) { if (args.primaryResource == PYSPARK_SHELL) { args.mainClass = "py4j.GatewayServer" args.childArgs = ArrayBuffer("--die-on-broken-pipe", "0") @@ -167,6 +184,13 @@ object SparkSubmit { } } + // In yarn-cluster mode for a python app, add primary resource and pyFiles to files + // that can be distributed with the job + if (args.isPython && isYarnCluster) { + args.files = mergeFileLists(args.files, args.primaryResource) + args.files = mergeFileLists(args.files, args.pyFiles) + } + // Special flag to avoid deprecation warnings at the client sysProps("SPARK_SUBMIT") = "true" @@ -245,7 +269,6 @@ object SparkSubmit { // Add the application jar automatically so the user doesn't have to call sc.addJar // For YARN cluster mode, the jar is already distributed on each node as "app.jar" // For python files, the primary resource is already distributed as a regular file - val isYarnCluster = clusterManager == YARN && deployMode == CLUSTER if (!isYarnCluster && !args.isPython) { var jars = sysProps.get("spark.jars").map(x => x.split(",").toSeq).getOrElse(Seq.empty) if (isUserJar(args.primaryResource)) { @@ -270,10 +293,22 @@ object SparkSubmit { // In yarn-cluster mode, use yarn.Client as a wrapper around the user class if (isYarnCluster) { childMainClass = "org.apache.spark.deploy.yarn.Client" - if (args.primaryResource != SPARK_INTERNAL) { - childArgs += ("--jar", args.primaryResource) + if (args.isPython) { + val mainPyFile = new Path(args.primaryResource).getName + childArgs += ("--primary-py-file", mainPyFile) + if (args.pyFiles != null) { + // These files will be distributed to each machine's working directory, so strip the + // path prefix + val pyFilesNames = args.pyFiles.split(",").map(p => (new Path(p)).getName).mkString(",") + childArgs += ("--py-files", pyFilesNames) + } + childArgs += ("--class", "org.apache.spark.deploy.PythonRunner") + } else { + if (args.primaryResource != SPARK_INTERNAL) { + childArgs += ("--jar", args.primaryResource) + } + childArgs += ("--class", args.mainClass) } - childArgs += ("--class", args.mainClass) if (args.childArgs != null) { args.childArgs.foreach { arg => childArgs += ("--arg", arg) } } diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala index 81ec08cb6d501..73e921fd83ef2 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala @@ -179,18 +179,6 @@ private[spark] class SparkSubmitArguments(args: Seq[String], env: Map[String, St SparkSubmit.printErrorAndExit("--py-files given but primary resource is not a Python script") } - // Require all python files to be local, so we can add them to the PYTHONPATH - if (isPython) { - if (Utils.nonLocalPaths(primaryResource).nonEmpty) { - SparkSubmit.printErrorAndExit(s"Only local python files are supported: $primaryResource") - } - val nonLocalPyFiles = Utils.nonLocalPaths(pyFiles).mkString(",") - if (nonLocalPyFiles.nonEmpty) { - SparkSubmit.printErrorAndExit( - s"Only local additional python files are supported: $nonLocalPyFiles") - } - } - if (master.startsWith("yarn")) { val hasHadoopEnv = env.contains("HADOOP_CONF_DIR") || env.contains("YARN_CONF_DIR") if (!hasHadoopEnv && !Utils.isTesting) { diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala index d3e327b2497b7..eb328b2b8ac50 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala @@ -34,7 +34,7 @@ import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.spark.{Logging, SecurityManager, SparkConf, SparkContext, SparkEnv} import org.apache.spark.SparkException -import org.apache.spark.deploy.SparkHadoopUtil +import org.apache.spark.deploy.{PythonRunner, SparkHadoopUtil} import org.apache.spark.deploy.history.HistoryServer import org.apache.spark.scheduler.cluster.YarnSchedulerBackend import org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages._ @@ -135,7 +135,7 @@ private[spark] class ApplicationMaster( .get().addShutdownHook(cleanupHook, ApplicationMaster.SHUTDOWN_HOOK_PRIORITY) // Call this to force generation of secret so it gets populated into the - // Hadoop UGI. This has to happen before the startUserClass which does a + // Hadoop UGI. This has to happen before the startUserApplication which does a // doAs in order for the credentials to be passed on to the executor containers. val securityMgr = new SecurityManager(sparkConf) @@ -254,7 +254,7 @@ private[spark] class ApplicationMaster( private def runDriver(securityMgr: SecurityManager): Unit = { addAmIpFilter() - userClassThread = startUserClass() + userClassThread = startUserApplication() // This a bit hacky, but we need to wait until the spark.driver.port property has // been set by the Thread executing the user class. @@ -448,9 +448,13 @@ private[spark] class ApplicationMaster( * * Returns the user thread that was started. */ - private def startUserClass(): Thread = { - logInfo("Starting the user JAR in a separate Thread") + private def startUserApplication(): Thread = { + logInfo("Starting the user application in a separate Thread") System.setProperty("spark.executor.instances", args.numExecutors.toString) + if (args.primaryPyFile != null && args.primaryPyFile.endsWith(".py")) { + System.setProperty("spark.submit.pyFiles", + PythonRunner.formatPaths(args.pyFiles).mkString(",")) + } val mainMethod = Class.forName(args.userClass, false, Thread.currentThread.getContextClassLoader).getMethod("main", classOf[Array[String]]) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala index d76a63276d752..e1a992af3aae7 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala @@ -24,6 +24,8 @@ import collection.mutable.ArrayBuffer class ApplicationMasterArguments(val args: Array[String]) { var userJar: String = null var userClass: String = null + var primaryPyFile: String = null + var pyFiles: String = null var userArgs: Seq[String] = Seq[String]() var executorMemory = 1024 var executorCores = 1 @@ -48,6 +50,14 @@ class ApplicationMasterArguments(val args: Array[String]) { userClass = value args = tail + case ("--primary-py-file") :: value :: tail => + primaryPyFile = value + args = tail + + case ("--py-files") :: value :: tail => + pyFiles = value + args = tail + case ("--args" | "--arg") :: value :: tail => userArgsBuffer += value args = tail @@ -81,6 +91,9 @@ class ApplicationMasterArguments(val args: Array[String]) { |Options: | --jar JAR_PATH Path to your application's JAR file | --class CLASS_NAME Name of your application's main class + | --primary-py-file A main Python file + | --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to + | place on the PYTHONPATH for Python apps. | --args ARGS Arguments to be passed to your application's main class. | Multiple invocations are possible, each will be passed in order. | --num-executors NUM Number of executors to start (Default: 2) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala index 1a18e6509ef26..91e8574e94e2f 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala @@ -21,7 +21,7 @@ import java.net.{InetAddress, UnknownHostException, URI, URISyntaxException} import java.nio.ByteBuffer import scala.collection.JavaConversions._ -import scala.collection.mutable.{HashMap, ListBuffer, Map} +import scala.collection.mutable.{ArrayBuffer, HashMap, ListBuffer, Map} import scala.util.{Try, Success, Failure} import com.google.common.base.Objects @@ -477,17 +477,32 @@ private[spark] class Client( } else { Nil } + val primaryPyFile = + if (args.primaryPyFile != null) { + Seq("--primary-py-file", args.primaryPyFile) + } else { + Nil + } + val pyFiles = + if (args.pyFiles != null) { + Seq("--py-files", args.pyFiles) + } else { + Nil + } val amClass = if (isClusterMode) { Class.forName("org.apache.spark.deploy.yarn.ApplicationMaster").getName } else { Class.forName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName } + if (args.primaryPyFile != null && args.primaryPyFile.endsWith(".py")) { + args.userArgs = ArrayBuffer(args.primaryPyFile, args.pyFiles) ++ args.userArgs + } val userArgs = args.userArgs.flatMap { arg => Seq("--arg", YarnSparkHadoopUtil.escapeForShell(arg)) } val amArgs = - Seq(amClass) ++ userClass ++ userJar ++ userArgs ++ + Seq(amClass) ++ userClass ++ userJar ++ primaryPyFile ++ pyFiles ++ userArgs ++ Seq( "--executor-memory", args.executorMemory.toString + "m", "--executor-cores", args.executorCores.toString, diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala index 5eb2023802dfc..3bc7eb1abf341 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala @@ -30,7 +30,9 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) var archives: String = null var userJar: String = null var userClass: String = null - var userArgs: Seq[String] = Seq[String]() + var pyFiles: String = null + var primaryPyFile: String = null + var userArgs: ArrayBuffer[String] = new ArrayBuffer[String]() var executorMemory = 1024 // MB var executorCores = 1 var numExecutors = DEFAULT_NUMBER_EXECUTORS @@ -132,7 +134,6 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) } private def parseArgs(inputArgs: List[String]): Unit = { - val userArgsBuffer = new ArrayBuffer[String]() var args = inputArgs while (!args.isEmpty) { @@ -145,11 +146,15 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) userClass = value args = tail + case ("--primary-py-file") :: value :: tail => + primaryPyFile = value + args = tail + case ("--args" | "--arg") :: value :: tail => if (args(0) == "--args") { println("--args is deprecated. Use --arg instead.") } - userArgsBuffer += value + userArgs += value args = tail case ("--master-class" | "--am-class") :: value :: tail => @@ -205,6 +210,10 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) addJars = value args = tail + case ("--py-files") :: value :: tail => + pyFiles = value + args = tail + case ("--files") :: value :: tail => files = value args = tail @@ -219,8 +228,6 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) throw new IllegalArgumentException(getUsageMessage(args)) } } - - userArgs = userArgsBuffer.readOnly } private def getUsageMessage(unknownParam: List[String] = null): String = { @@ -232,6 +239,7 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) | --jar JAR_PATH Path to your application's JAR file (required in yarn-cluster | mode) | --class CLASS_NAME Name of your application's main class (required) + | --primary-py-file A main Python file | --arg ARG Argument to be passed to your application's main class. | Multiple invocations are possible, each will be passed in order. | --num-executors NUM Number of executors to start (Default: 2) @@ -244,6 +252,8 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) | 'default') | --addJars jars Comma separated list of local jars that want SparkContext.addJar | to work with. + | --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to + | place on the PYTHONPATH for Python apps. | --files files Comma separated list of files to be distributed with the job. | --archives archives Comma separated list of archives to be distributed with the job. """.stripMargin diff --git a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala index d79b85e867fcd..7165918e1bfcf 100644 --- a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala +++ b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala @@ -45,6 +45,29 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit |log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n """.stripMargin + private val TEST_PYFILE = """ + |import sys + |from operator import add + | + |from pyspark import SparkConf , SparkContext + |if __name__ == "__main__": + | if len(sys.argv) != 3: + | print >> sys.stderr, "Usage: test.py [master] [result file]" + | exit(-1) + | conf = SparkConf() + | conf.setMaster(sys.argv[1]).setAppName("python test in yarn cluster mode") + | sc = SparkContext(conf=conf) + | status = open(sys.argv[2],'w') + | result = "failure" + | rdd = sc.parallelize(range(10)) + | cnt = rdd.count() + | if cnt == 10: + | result = "success" + | status.write(result) + | status.close() + | sc.stop() + """.stripMargin + private var yarnCluster: MiniYARNCluster = _ private var tempDir: File = _ private var fakeSparkJar: File = _ @@ -98,6 +121,9 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit } fakeSparkJar = File.createTempFile("sparkJar", null, tempDir) + val sparkHome = sys.props.getOrElse("spark.test.home", fail("spark.test.home is not set!")) + sys.props += ("spark.yarn.appMasterEnv.SPARK_HOME" -> sparkHome) + sys.props += ("spark.executorEnv.SPARK_HOME" -> sparkHome) sys.props += ("spark.yarn.jar" -> ("local:" + fakeSparkJar.getAbsolutePath())) sys.props += ("spark.executor.instances" -> "1") sys.props += ("spark.driver.extraClassPath" -> childClasspath) @@ -146,6 +172,24 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit assert(Utils.exceptionString(exception).contains("Application finished with failed status")) } + test("run Python application in yarn-cluster mode") { + val primaryPyFile = new File(tempDir, "test.py") + Files.write(TEST_PYFILE, primaryPyFile, Charsets.UTF_8) + val pyFile = new File(tempDir, "test2.py") + Files.write(TEST_PYFILE, pyFile, Charsets.UTF_8) + var result = File.createTempFile("result", null, tempDir) + + val args = Array("--class", "org.apache.spark.deploy.PythonRunner", + "--primary-py-file", primaryPyFile.getAbsolutePath(), + "--py-files", pyFile.getAbsolutePath(), + "--arg", "yarn-cluster", + "--arg", result.getAbsolutePath(), + "--name", "python test in yarn-cluster mode", + "--num-executors", "1") + Client.main(args) + checkResult(result) + } + /** * This is a workaround for an issue with yarn-cluster mode: the Client class will not provide * any sort of error when the job process finishes successfully, but the job itself fails. So From 3f941b68a2336aa7876aeda99865e7c19b53bc5c Mon Sep 17 00:00:00 2001 From: Nicholas Chammas Date: Mon, 2 Feb 2015 12:33:49 -0800 Subject: [PATCH 14/28] [Docs] Fix Building Spark link text Author: Nicholas Chammas Closes #4312 from nchammas/patch-2 and squashes the following commits: 9d943aa [Nicholas Chammas] [Docs] Fix Building Spark link text --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 16628bd406775..af02339578195 100644 --- a/README.md +++ b/README.md @@ -26,7 +26,7 @@ To build Spark and its example programs, run: (You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at -["Building Spark with Maven"](http://spark.apache.org/docs/latest/building-spark.html). +["Building Spark"](http://spark.apache.org/docs/latest/building-spark.html). ## Interactive Scala Shell From 62a93a1698e8d0a667eb1718ba75dcfc86eabaaf Mon Sep 17 00:00:00 2001 From: Xutingjun <1039320815@qq.com> Date: Mon, 2 Feb 2015 12:37:51 -0800 Subject: [PATCH 15/28] [SPARK-5530] Add executor container to executorIdToContainer when call killExecutor method, it will only go to the else branch, because the variable executorIdToContainer never be put any value. Author: Xutingjun <1039320815@qq.com> Closes #4309 from XuTingjun/dynamicAllocator and squashes the following commits: c823418 [Xutingjun] fix bugwq --- .../main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala | 1 + 1 file changed, 1 insertion(+) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala index 3849586c6111e..040406c15030e 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala @@ -300,6 +300,7 @@ private[yarn] class YarnAllocator( assert(container.getResource.getMemory >= resource.getMemory) logInfo("Launching container %s for on host %s".format(containerId, executorHostname)) + executorIdToContainer(executorId) = container val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname, new HashSet[ContainerId]) From 683e938242e29a0d584452e5230b4168b85bdab2 Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh Date: Mon, 2 Feb 2015 13:53:55 -0800 Subject: [PATCH 16/28] [SPARK-5212][SQL] Add support of schema-less, custom field delimiter and SerDe for HiveQL transform This pr adds the support of schema-less syntax, custom field delimiter and SerDe for HiveQL's transform. Author: Liang-Chi Hsieh Closes #4014 from viirya/schema_less_trans and squashes the following commits: ac2d1fe [Liang-Chi Hsieh] Refactor codes for comments. a137933 [Liang-Chi Hsieh] Merge remote-tracking branch 'upstream/master' into schema_less_trans aa10fbd [Liang-Chi Hsieh] Add Hive golden answer files again. 575f695 [Liang-Chi Hsieh] Add Hive golden answer files for new unit tests. a422562 [Liang-Chi Hsieh] Use createQueryTest for unit tests and remove unnecessary imports. ccb71e3 [Liang-Chi Hsieh] Refactor codes for comments. 37bd391 [Liang-Chi Hsieh] Merge remote-tracking branch 'upstream/master' into schema_less_trans 6000889 [Liang-Chi Hsieh] Wrap input and output schema into ScriptInputOutputSchema. 21727f7 [Liang-Chi Hsieh] Move schema-less output to proper place. Use multilines instead of a long line SQL. 9a6dc04 [Liang-Chi Hsieh] setRecordReaderID is introduced in 0.13.1, use reflection API to call it. 7a14f31 [Liang-Chi Hsieh] Fix bug. 799b5e1 [Liang-Chi Hsieh] Call getSerializedClass instead of using Text. be2c3fc [Liang-Chi Hsieh] Fix style. 32d3046 [Liang-Chi Hsieh] Add SerDe support. ab22f7b [Liang-Chi Hsieh] Fix style. 7a48e42 [Liang-Chi Hsieh] Add support of custom field delimiter. b1729d9 [Liang-Chi Hsieh] Fix style. ccee49e [Liang-Chi Hsieh] Add unit test. f561c37 [Liang-Chi Hsieh] Add support of schema-less script transformation. --- .../plans/logical/ScriptTransformation.scala | 10 +- .../org/apache/spark/sql/hive/HiveQl.scala | 59 ++- .../spark/sql/hive/HiveStrategies.scala | 4 +- .../hive/execution/ScriptTransformation.scala | 220 +++++++- ...ansform-0-d5738de14dd6e29da712ec3318f4118f | 500 ++++++++++++++++++ ...ansform-1-49624ef4e2c3cc2040c06660b926219b | 500 ++++++++++++++++++ ...h SerDe-0-cdc393f3914c879787efe523f692b1e0 | 500 ++++++++++++++++++ ... SerDe3-0-58a8b7eb07a949bc44dccb723222957f | 500 ++++++++++++++++++ ... SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 | 500 ++++++++++++++++++ ...limiter-0-703cca3c02ced422feb11dc13b744484 | 500 ++++++++++++++++++ ...limiter-0-82639dda9ba42df817466dffe2929174 | 500 ++++++++++++++++++ ...imiter2-0-e8713b21483e1efb78ee90b61530479b | 500 ++++++++++++++++++ ...imiter2-0-e8d2b2e60551f69bfb44e555f5cff064 | 500 ++++++++++++++++++ ...imiter3-0-d4f4f471819345e9ce1964e281ea5289 | 500 ++++++++++++++++++ .../sql/hive/execution/HiveQuerySuite.scala | 76 ++- .../org/apache/spark/sql/hive/Shim12.scala | 6 +- .../org/apache/spark/sql/hive/Shim13.scala | 19 +- 17 files changed, 5360 insertions(+), 34 deletions(-) create mode 100644 sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f create mode 100644 sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b create mode 100644 sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 create mode 100644 sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f create mode 100644 sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala index 4460c86ed9026..cfe2c7a39a17c 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala @@ -25,9 +25,17 @@ import org.apache.spark.sql.catalyst.expressions.{Attribute, Expression} * @param input the set of expression that should be passed to the script. * @param script the command that should be executed. * @param output the attributes that are produced by the script. + * @param ioschema the input and output schema applied in the execution of the script. */ case class ScriptTransformation( input: Seq[Expression], script: String, output: Seq[Attribute], - child: LogicalPlan) extends UnaryNode + child: LogicalPlan, + ioschema: ScriptInputOutputSchema) extends UnaryNode + +/** + * A placeholder for implementation specific input and output properties when passing data + * to a script. For example, in Hive this would specify which SerDes to use. + */ +trait ScriptInputOutputSchema diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala index 30a64b48d7951..ab305e1f82a55 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala @@ -33,7 +33,7 @@ import org.apache.spark.sql.catalyst.plans._ import org.apache.spark.sql.catalyst.plans.logical import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.execution.ExplainCommand -import org.apache.spark.sql.hive.execution.{HiveNativeCommand, DropTable, AnalyzeTable} +import org.apache.spark.sql.hive.execution.{HiveNativeCommand, DropTable, AnalyzeTable, HiveScriptIOSchema} import org.apache.spark.sql.types._ /* Implicit conversions */ @@ -627,29 +627,64 @@ https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C case Token("TOK_SELEXPR", Token("TOK_TRANSFORM", Token("TOK_EXPLIST", inputExprs) :: - Token("TOK_SERDE", Nil) :: + Token("TOK_SERDE", inputSerdeClause) :: Token("TOK_RECORDWRITER", writerClause) :: // TODO: Need to support other types of (in/out)put Token(script, Nil) :: - Token("TOK_SERDE", serdeClause) :: + Token("TOK_SERDE", outputSerdeClause) :: Token("TOK_RECORDREADER", readerClause) :: - outputClause :: Nil) :: Nil) => - - val output = outputClause match { - case Token("TOK_ALIASLIST", aliases) => - aliases.map { case Token(name, Nil) => AttributeReference(name, StringType)() } - case Token("TOK_TABCOLLIST", attributes) => - attributes.map { case Token("TOK_TABCOL", Token(name, Nil) :: dataType :: Nil) => - AttributeReference(name, nodeToDataType(dataType))() } + outputClause) :: Nil) => + + val (output, schemaLess) = outputClause match { + case Token("TOK_ALIASLIST", aliases) :: Nil => + (aliases.map { case Token(name, Nil) => AttributeReference(name, StringType)() }, + false) + case Token("TOK_TABCOLLIST", attributes) :: Nil => + (attributes.map { case Token("TOK_TABCOL", Token(name, Nil) :: dataType :: Nil) => + AttributeReference(name, nodeToDataType(dataType))() }, false) + case Nil => + (List(AttributeReference("key", StringType)(), + AttributeReference("value", StringType)()), true) } + + def matchSerDe(clause: Seq[ASTNode]) = clause match { + case Token("TOK_SERDEPROPS", propsClause) :: Nil => + val rowFormat = propsClause.map { + case Token(name, Token(value, Nil) :: Nil) => (name, value) + } + (rowFormat, "", Nil) + + case Token("TOK_SERDENAME", Token(serdeClass, Nil) :: Nil) :: Nil => + (Nil, serdeClass, Nil) + + case Token("TOK_SERDENAME", Token(serdeClass, Nil) :: + Token("TOK_TABLEPROPERTIES", + Token("TOK_TABLEPROPLIST", propsClause) :: Nil) :: Nil) :: Nil => + val serdeProps = propsClause.map { + case Token("TOK_TABLEPROPERTY", Token(name, Nil) :: Token(value, Nil) :: Nil) => + (name, value) + } + (Nil, serdeClass, serdeProps) + + case Nil => (Nil, "", Nil) + } + + val (inRowFormat, inSerdeClass, inSerdeProps) = matchSerDe(inputSerdeClause) + val (outRowFormat, outSerdeClass, outSerdeProps) = matchSerDe(outputSerdeClause) + val unescapedScript = BaseSemanticAnalyzer.unescapeSQLString(script) + val schema = HiveScriptIOSchema( + inRowFormat, outRowFormat, + inSerdeClass, outSerdeClass, + inSerdeProps, outSerdeProps, schemaLess) + Some( logical.ScriptTransformation( inputExprs.map(nodeToExpr), unescapedScript, output, - withWhere)) + withWhere, schema)) case _ => None } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala index ace9329cd5821..83244ce1e372a 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala @@ -166,8 +166,8 @@ private[hive] trait HiveStrategies { object Scripts extends Strategy { def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match { - case logical.ScriptTransformation(input, script, output, child) => - ScriptTransformation(input, script, output, planLater(child))(hiveContext) :: Nil + case logical.ScriptTransformation(input, script, output, child, schema: HiveScriptIOSchema) => + ScriptTransformation(input, script, output, planLater(child), schema)(hiveContext) :: Nil case _ => Nil } } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala index 0c8f676e9c5c8..c54fbb6e24690 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala @@ -18,11 +18,26 @@ package org.apache.spark.sql.hive.execution import java.io.{BufferedReader, InputStreamReader} +import java.io.{DataInputStream, DataOutputStream, EOFException} +import java.util.Properties + +import org.apache.hadoop.hive.serde.serdeConstants +import org.apache.hadoop.hive.serde2.AbstractSerDe +import org.apache.hadoop.hive.serde2.Serializer +import org.apache.hadoop.hive.serde2.Deserializer +import org.apache.hadoop.hive.serde2.objectinspector._ +import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory.ObjectInspectorOptions +import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils.ObjectInspectorCopyOption import org.apache.spark.annotation.DeveloperApi import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans.logical.ScriptInputOutputSchema import org.apache.spark.sql.execution._ -import org.apache.spark.sql.hive.HiveContext +import org.apache.spark.sql.types.DataType +import org.apache.spark.sql.hive.{HiveContext, HiveInspectors} +import org.apache.spark.sql.hive.HiveShim._ +import org.apache.spark.util.Utils + /* Implicit conversions */ import scala.collection.JavaConversions._ @@ -40,7 +55,8 @@ case class ScriptTransformation( input: Seq[Expression], script: String, output: Seq[Attribute], - child: SparkPlan)(@transient sc: HiveContext) + child: SparkPlan, + ioschema: HiveScriptIOSchema)(@transient sc: HiveContext) extends UnaryNode { override def otherCopyArgs = sc :: Nil @@ -53,28 +69,202 @@ case class ScriptTransformation( val inputStream = proc.getInputStream val outputStream = proc.getOutputStream val reader = new BufferedReader(new InputStreamReader(inputStream)) + + val (outputSerde, outputSoi) = ioschema.initOutputSerDe(output) + + val iterator: Iterator[Row] = new Iterator[Row] with HiveInspectors { + var cacheRow: Row = null + var curLine: String = null + var eof: Boolean = false + + override def hasNext: Boolean = { + if (outputSerde == null) { + if (curLine == null) { + curLine = reader.readLine() + curLine != null + } else { + true + } + } else { + !eof + } + } + + def deserialize(): Row = { + if (cacheRow != null) return cacheRow + + val mutableRow = new SpecificMutableRow(output.map(_.dataType)) + try { + val dataInputStream = new DataInputStream(inputStream) + val writable = outputSerde.getSerializedClass().newInstance + writable.readFields(dataInputStream) + + val raw = outputSerde.deserialize(writable) + val dataList = outputSoi.getStructFieldsDataAsList(raw) + val fieldList = outputSoi.getAllStructFieldRefs() + + var i = 0 + dataList.foreach( element => { + if (element == null) { + mutableRow.setNullAt(i) + } else { + mutableRow(i) = unwrap(element, fieldList(i).getFieldObjectInspector) + } + i += 1 + }) + return mutableRow + } catch { + case e: EOFException => + eof = true + return null + } + } - // TODO: This should be exposed as an iterator instead of reading in all the data at once. - val outputLines = collection.mutable.ArrayBuffer[Row]() - val readerThread = new Thread("Transform OutputReader") { - override def run() { - var curLine = reader.readLine() - while (curLine != null) { - // TODO: Use SerDe - outputLines += new GenericRow(curLine.split("\t").asInstanceOf[Array[Any]]) + override def next(): Row = { + if (!hasNext) { + throw new NoSuchElementException + } + + if (outputSerde == null) { + val prevLine = curLine curLine = reader.readLine() + + if (!ioschema.schemaLess) { + new GenericRow( + prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD")) + .asInstanceOf[Array[Any]]) + } else { + new GenericRow( + prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD"), 2) + .asInstanceOf[Array[Any]]) + } + } else { + val ret = deserialize() + if (!eof) { + cacheRow = null + cacheRow = deserialize() + } + ret } } } - readerThread.start() + + val (inputSerde, inputSoi) = ioschema.initInputSerDe(input) + val dataOutputStream = new DataOutputStream(outputStream) val outputProjection = new InterpretedProjection(input, child.output) + iter .map(outputProjection) - // TODO: Use SerDe - .map(_.mkString("", "\t", "\n").getBytes("utf-8")).foreach(outputStream.write) + .foreach { row => + if (inputSerde == null) { + val data = row.mkString("", ioschema.inputRowFormatMap("TOK_TABLEROWFORMATFIELD"), + ioschema.inputRowFormatMap("TOK_TABLEROWFORMATLINES")).getBytes("utf-8") + + outputStream.write(data) + } else { + val writable = inputSerde.serialize(row.asInstanceOf[GenericRow].values, inputSoi) + prepareWritable(writable).write(dataOutputStream) + } + } outputStream.close() - readerThread.join() - outputLines.toIterator + iterator + } + } +} + +/** + * The wrapper class of Hive input and output schema properties + */ +case class HiveScriptIOSchema ( + inputRowFormat: Seq[(String, String)], + outputRowFormat: Seq[(String, String)], + inputSerdeClass: String, + outputSerdeClass: String, + inputSerdeProps: Seq[(String, String)], + outputSerdeProps: Seq[(String, String)], + schemaLess: Boolean) extends ScriptInputOutputSchema with HiveInspectors { + + val defaultFormat = Map(("TOK_TABLEROWFORMATFIELD", "\t"), + ("TOK_TABLEROWFORMATLINES", "\n")) + + val inputRowFormatMap = inputRowFormat.toMap.withDefault((k) => defaultFormat(k)) + val outputRowFormatMap = outputRowFormat.toMap.withDefault((k) => defaultFormat(k)) + + + def initInputSerDe(input: Seq[Expression]): (AbstractSerDe, ObjectInspector) = { + val (columns, columnTypes) = parseAttrs(input) + val serde = initSerDe(inputSerdeClass, columns, columnTypes, inputSerdeProps) + (serde, initInputSoi(serde, columns, columnTypes)) + } + + def initOutputSerDe(output: Seq[Attribute]): (AbstractSerDe, StructObjectInspector) = { + val (columns, columnTypes) = parseAttrs(output) + val serde = initSerDe(outputSerdeClass, columns, columnTypes, outputSerdeProps) + (serde, initOutputputSoi(serde)) + } + + def parseAttrs(attrs: Seq[Expression]): (Seq[String], Seq[DataType]) = { + + val columns = attrs.map { + case aref: AttributeReference => aref.name + case e: NamedExpression => e.name + case _ => null + } + + val columnTypes = attrs.map { + case aref: AttributeReference => aref.dataType + case e: NamedExpression => e.dataType + case _ => null + } + + (columns, columnTypes) + } + + def initSerDe(serdeClassName: String, columns: Seq[String], + columnTypes: Seq[DataType], serdeProps: Seq[(String, String)]): AbstractSerDe = { + + val serde: AbstractSerDe = if (serdeClassName != "") { + val trimed_class = serdeClassName.split("'")(1) + Utils.classForName(trimed_class) + .newInstance.asInstanceOf[AbstractSerDe] + } else { + null + } + + if (serde != null) { + val columnTypesNames = columnTypes.map(_.toTypeInfo.getTypeName()).mkString(",") + + var propsMap = serdeProps.map(kv => { + (kv._1.split("'")(1), kv._2.split("'")(1)) + }).toMap + (serdeConstants.LIST_COLUMNS -> columns.mkString(",")) + propsMap = propsMap + (serdeConstants.LIST_COLUMN_TYPES -> columnTypesNames) + + val properties = new Properties() + properties.putAll(propsMap) + serde.initialize(null, properties) + } + + serde + } + + def initInputSoi(inputSerde: AbstractSerDe, columns: Seq[String], columnTypes: Seq[DataType]) + : ObjectInspector = { + + if (inputSerde != null) { + val fieldObjectInspectors = columnTypes.map(toInspector(_)) + ObjectInspectorFactory + .getStandardStructObjectInspector(columns, fieldObjectInspectors) + .asInstanceOf[ObjectInspector] + } else { + null + } + } + + def initOutputputSoi(outputSerde: AbstractSerDe): StructObjectInspector = { + if (outputSerde != null) { + outputSerde.getObjectInspector().asInstanceOf[StructObjectInspector] + } else { + null } } } diff --git a/sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f b/sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b b/sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 b/sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f b/sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 b/sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 new file mode 100644 index 0000000000000..e34118512c1d7 --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 @@ -0,0 +1,500 @@ +238 +86 +311 +27 +165 +409 +255 +278 +98 +484 +265 +193 +401 +150 +273 +224 +369 +66 +128 +213 +146 +406 +429 +374 +152 +469 +145 +495 +37 +327 +281 +277 +209 +15 +82 +403 +166 +417 +430 +252 +292 +219 +287 +153 +193 +338 +446 +459 +394 +237 +482 +174 +413 +494 +207 +199 +466 +208 +174 +399 +396 +247 +417 +489 +162 +377 +397 +309 +365 +266 +439 +342 +367 +325 +167 +195 +475 +17 +113 +155 +203 +339 +0 +455 +128 +311 +316 +57 +302 +205 +149 +438 +345 +129 +170 +20 +489 +157 +378 +221 +92 +111 +47 +72 +4 +280 +35 +427 +277 +208 +356 +399 +169 +382 +498 +125 +386 +437 +469 +192 +286 +187 +176 +54 +459 +51 +138 +103 +239 +213 +216 +430 +278 +176 +289 +221 +65 +318 +332 +311 +275 +137 +241 +83 +333 +180 +284 +12 +230 +181 +67 +260 +404 +384 +489 +353 +373 +272 +138 +217 +84 +348 +466 +58 +8 +411 +230 +208 +348 +24 +463 +431 +179 +172 +42 +129 +158 +119 +496 +0 +322 +197 +468 +393 +454 +100 +298 +199 +191 +418 +96 +26 +165 +327 +230 +205 +120 +131 +51 +404 +43 +436 +156 +469 +468 +308 +95 +196 +288 +481 +457 +98 +282 +197 +187 +318 +318 +409 +470 +137 +369 +316 +169 +413 +85 +77 +0 +490 +87 +364 +179 +118 +134 +395 +282 +138 +238 +419 +15 +118 +72 +90 +307 +19 +435 +10 +277 +273 +306 +224 +309 +389 +327 +242 +369 +392 +272 +331 +401 +242 +452 +177 +226 +5 +497 +402 +396 +317 +395 +58 +35 +336 +95 +11 +168 +34 +229 +233 +143 +472 +322 +498 +160 +195 +42 +321 +430 +119 +489 +458 +78 +76 +41 +223 +492 +149 +449 +218 +228 +138 +453 +30 +209 +64 +468 +76 +74 +342 +69 +230 +33 +368 +103 +296 +113 +216 +367 +344 +167 +274 +219 +239 +485 +116 +223 +256 +263 +70 +487 +480 +401 +288 +191 +5 +244 +438 +128 +467 +432 +202 +316 +229 +469 +463 +280 +2 +35 +283 +331 +235 +80 +44 +193 +321 +335 +104 +466 +366 +175 +403 +483 +53 +105 +257 +406 +409 +190 +406 +401 +114 +258 +90 +203 +262 +348 +424 +12 +396 +201 +217 +164 +431 +454 +478 +298 +125 +431 +164 +424 +187 +382 +5 +70 +397 +480 +291 +24 +351 +255 +104 +70 +163 +438 +119 +414 +200 +491 +237 +439 +360 +248 +479 +305 +417 +199 +444 +120 +429 +169 +443 +323 +325 +277 +230 +478 +178 +468 +310 +317 +333 +493 +460 +207 +249 +265 +480 +83 +136 +353 +172 +214 +462 +233 +406 +133 +175 +189 +454 +375 +401 +421 +407 +384 +256 +26 +134 +67 +384 +379 +18 +462 +492 +100 +298 +9 +341 +498 +146 +458 +362 +186 +285 +348 +167 +18 +273 +183 +281 +344 +97 +469 +315 +84 +28 +37 +448 +152 +348 +307 +194 +414 +477 +222 +126 +90 +169 +403 +400 +200 +97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 new file mode 100644 index 0000000000000..e34118512c1d7 --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 @@ -0,0 +1,500 @@ +238 +86 +311 +27 +165 +409 +255 +278 +98 +484 +265 +193 +401 +150 +273 +224 +369 +66 +128 +213 +146 +406 +429 +374 +152 +469 +145 +495 +37 +327 +281 +277 +209 +15 +82 +403 +166 +417 +430 +252 +292 +219 +287 +153 +193 +338 +446 +459 +394 +237 +482 +174 +413 +494 +207 +199 +466 +208 +174 +399 +396 +247 +417 +489 +162 +377 +397 +309 +365 +266 +439 +342 +367 +325 +167 +195 +475 +17 +113 +155 +203 +339 +0 +455 +128 +311 +316 +57 +302 +205 +149 +438 +345 +129 +170 +20 +489 +157 +378 +221 +92 +111 +47 +72 +4 +280 +35 +427 +277 +208 +356 +399 +169 +382 +498 +125 +386 +437 +469 +192 +286 +187 +176 +54 +459 +51 +138 +103 +239 +213 +216 +430 +278 +176 +289 +221 +65 +318 +332 +311 +275 +137 +241 +83 +333 +180 +284 +12 +230 +181 +67 +260 +404 +384 +489 +353 +373 +272 +138 +217 +84 +348 +466 +58 +8 +411 +230 +208 +348 +24 +463 +431 +179 +172 +42 +129 +158 +119 +496 +0 +322 +197 +468 +393 +454 +100 +298 +199 +191 +418 +96 +26 +165 +327 +230 +205 +120 +131 +51 +404 +43 +436 +156 +469 +468 +308 +95 +196 +288 +481 +457 +98 +282 +197 +187 +318 +318 +409 +470 +137 +369 +316 +169 +413 +85 +77 +0 +490 +87 +364 +179 +118 +134 +395 +282 +138 +238 +419 +15 +118 +72 +90 +307 +19 +435 +10 +277 +273 +306 +224 +309 +389 +327 +242 +369 +392 +272 +331 +401 +242 +452 +177 +226 +5 +497 +402 +396 +317 +395 +58 +35 +336 +95 +11 +168 +34 +229 +233 +143 +472 +322 +498 +160 +195 +42 +321 +430 +119 +489 +458 +78 +76 +41 +223 +492 +149 +449 +218 +228 +138 +453 +30 +209 +64 +468 +76 +74 +342 +69 +230 +33 +368 +103 +296 +113 +216 +367 +344 +167 +274 +219 +239 +485 +116 +223 +256 +263 +70 +487 +480 +401 +288 +191 +5 +244 +438 +128 +467 +432 +202 +316 +229 +469 +463 +280 +2 +35 +283 +331 +235 +80 +44 +193 +321 +335 +104 +466 +366 +175 +403 +483 +53 +105 +257 +406 +409 +190 +406 +401 +114 +258 +90 +203 +262 +348 +424 +12 +396 +201 +217 +164 +431 +454 +478 +298 +125 +431 +164 +424 +187 +382 +5 +70 +397 +480 +291 +24 +351 +255 +104 +70 +163 +438 +119 +414 +200 +491 +237 +439 +360 +248 +479 +305 +417 +199 +444 +120 +429 +169 +443 +323 +325 +277 +230 +478 +178 +468 +310 +317 +333 +493 +460 +207 +249 +265 +480 +83 +136 +353 +172 +214 +462 +233 +406 +133 +175 +189 +454 +375 +401 +421 +407 +384 +256 +26 +134 +67 +384 +379 +18 +462 +492 +100 +298 +9 +341 +498 +146 +458 +362 +186 +285 +348 +167 +18 +273 +183 +281 +344 +97 +469 +315 +84 +28 +37 +448 +152 +348 +307 +194 +414 +477 +222 +126 +90 +169 +403 +400 +200 +97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 b/sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 60619f5d99578..4c53b10ba96e9 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -63,7 +63,7 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { sql("SHOW TABLES") } } - + createQueryTest("! operator", """ |SELECT a FROM ( @@ -329,6 +329,80 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { createQueryTest("transform", "SELECT TRANSFORM (key) USING 'cat' AS (tKey) FROM src") + createQueryTest("schema-less transform", + """ + |SELECT TRANSFORM (key, value) USING 'cat' FROM src; + |SELECT TRANSFORM (*) USING 'cat' FROM src; + """.stripMargin) + + val delimiter = "'\t'" + + createQueryTest("transform with custom field delimiter", + s""" + |SELECT TRANSFORM (key) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} + |USING 'cat' AS (tKey) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with custom field delimiter2", + s""" + |SELECT TRANSFORM (key, value) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} + |USING 'cat' ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with custom field delimiter3", + s""" + |SELECT TRANSFORM (*) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} + |USING 'cat' ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with SerDe", + """ + |SELECT TRANSFORM (key, value) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' + |USING 'cat' AS (tKey, tValue) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' FROM src; + """.stripMargin.replaceAll("\n", " ")) + + test("transform with SerDe2") { + + sql("CREATE TABLE small_src(key INT, value STRING)") + sql("INSERT OVERWRITE TABLE small_src SELECT key, value FROM src LIMIT 10") + + val expected = sql("SELECT key FROM small_src").collect().head + val res = sql( + """ + |SELECT TRANSFORM (key) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.avro.AvroSerDe' + |WITH SERDEPROPERTIES ('avro.schema.literal'='{"namespace": + |"testing.hive.avro.serde","name": "src","type": "record","fields": + |[{"name":"key","type":"int"}]}') USING 'cat' AS (tKey INT) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.avro.AvroSerDe' WITH SERDEPROPERTIES + |('avro.schema.literal'='{"namespace": "testing.hive.avro.serde","name": + |"src","type": "record","fields": [{"name":"key","type":"int"}]}') + |FROM small_src + """.stripMargin.replaceAll("\n", " ")).collect().head + + assert(expected(0) === res(0)) + } + + createQueryTest("transform with SerDe3", + """ + |SELECT TRANSFORM (*) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES + |('serialization.last.column.takes.rest'='true') USING 'cat' AS (tKey, tValue) + |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' + |WITH SERDEPROPERTIES ('serialization.last.column.takes.rest'='true') FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with SerDe4", + """ + |SELECT TRANSFORM (*) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES + |('serialization.last.column.takes.rest'='true') USING 'cat' ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES + |('serialization.last.column.takes.rest'='true') FROM src; + """.stripMargin.replaceAll("\n", " ")) + createQueryTest("LIKE", "SELECT * FROM src WHERE value LIKE '%1%'") diff --git a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala index c0b7741bc3e53..254919e8f6fdc 100644 --- a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala +++ b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala @@ -38,7 +38,7 @@ import org.apache.hadoop.hive.serde2.objectinspector.{ObjectInspector, Primitive import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector.PrimitiveCategory import org.apache.hadoop.hive.serde2.objectinspector.primitive.{HiveDecimalObjectInspector, PrimitiveObjectInspectorFactory} import org.apache.hadoop.hive.serde2.typeinfo.{TypeInfo, TypeInfoFactory} -import org.apache.hadoop.io.NullWritable +import org.apache.hadoop.io.{NullWritable, Writable} import org.apache.hadoop.mapred.InputFormat import org.apache.spark.sql.types.{Decimal, DecimalType} @@ -241,6 +241,10 @@ private[hive] object HiveShim { Decimal(hdoi.getPrimitiveJavaObject(data).bigDecimalValue()) } } + + def prepareWritable(w: Writable): Writable = { + w + } } class ShimFileSinkDesc(var dir: String, var tableInfo: TableDesc, var compressed: Boolean) diff --git a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala index c04cda7bf1537..45ca59ae56a38 100644 --- a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala +++ b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala @@ -19,13 +19,14 @@ package org.apache.spark.sql.hive import java.util.{ArrayList => JArrayList} import java.util.Properties +import java.rmi.server.UID import scala.collection.JavaConversions._ import scala.language.implicitConversions import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path -import org.apache.hadoop.io.NullWritable +import org.apache.hadoop.io.{NullWritable, Writable} import org.apache.hadoop.mapred.InputFormat import org.apache.hadoop.hive.common.StatsSetupConst import org.apache.hadoop.hive.common.`type`.{HiveDecimal} @@ -39,6 +40,7 @@ import org.apache.hadoop.hive.serde2.objectinspector.primitive.{HiveDecimalObjec import org.apache.hadoop.hive.serde2.objectinspector.{PrimitiveObjectInspector, ObjectInspector} import org.apache.hadoop.hive.serde2.{Deserializer, ColumnProjectionUtils} import org.apache.hadoop.hive.serde2.{io => hiveIo} +import org.apache.hadoop.hive.serde2.avro.AvroGenericRecordWritable import org.apache.hadoop.{io => hadoopIo} import org.apache.spark.Logging @@ -395,10 +397,23 @@ private[hive] object HiveShim { Decimal(hdoi.getPrimitiveJavaObject(data).bigDecimalValue(), hdoi.precision(), hdoi.scale()) } } + + /* + * Bug introduced in hive-0.13. AvroGenericRecordWritable has a member recordReaderID that + * is needed to initialize before serialization. + */ + def prepareWritable(w: Writable): Writable = { + w match { + case w: AvroGenericRecordWritable => + w.setRecordReaderID(new UID()) + case _ => + } + w + } } /* - * Bug introdiced in hive-0.13. FileSinkDesc is serilizable, but its member path is not. + * Bug introduced in hive-0.13. FileSinkDesc is serilizable, but its member path is not. * Fix it through wrapper. */ class ShimFileSinkDesc(var dir: String, var tableInfo: TableDesc, var compressed: Boolean) From e908322cd5991e6cbdaaafb8cd494759dac01225 Mon Sep 17 00:00:00 2001 From: Iulian Dragos Date: Mon, 2 Feb 2015 14:00:33 -0800 Subject: [PATCH 17/28] [SPARK-4631][streaming][FIX] Wait for a receiver to start before publishing test data. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This fixes two sources of non-deterministic failures in this test: - wait for a receiver to be up before pushing data through MQTT - gracefully handle the case where the MQTT client is overloaded. There’s a hard-coded limit of 10 in-flight messages, and this test may hit it. Instead of crashing, we retry sending the message. Both of these are needed to make the test pass reliably on my machine. Author: Iulian Dragos Closes #4270 from dragos/issue/fix-flaky-test-SPARK-4631 and squashes the following commits: f66c482 [Iulian Dragos] [SPARK-4631][streaming] Wait for a receiver to start before publishing test data. d408a8e [Iulian Dragos] Install callback before connecting to MQTT broker. --- .../streaming/mqtt/MQTTInputDStream.scala | 26 +++++++------- .../streaming/mqtt/MQTTStreamSuite.scala | 35 +++++++++++++++++-- 2 files changed, 46 insertions(+), 15 deletions(-) diff --git a/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala b/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala index 77661f71ada21..1ef91dd49284f 100644 --- a/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala +++ b/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala @@ -55,14 +55,14 @@ class MQTTInputDStream( brokerUrl: String, topic: String, storageLevel: StorageLevel - ) extends ReceiverInputDStream[String](ssc_) with Logging { - + ) extends ReceiverInputDStream[String](ssc_) { + def getReceiver(): Receiver[String] = { new MQTTReceiver(brokerUrl, topic, storageLevel) } } -private[streaming] +private[streaming] class MQTTReceiver( brokerUrl: String, topic: String, @@ -72,21 +72,15 @@ class MQTTReceiver( def onStop() { } - + def onStart() { - // Set up persistence for messages + // Set up persistence for messages val persistence = new MemoryPersistence() // Initializing Mqtt Client specifying brokerUrl, clientID and MqttClientPersistance val client = new MqttClient(brokerUrl, MqttClient.generateClientId(), persistence) - // Connect to MqttBroker - client.connect() - - // Subscribe to Mqtt topic - client.subscribe(topic) - // Callback automatically triggers as and when new message arrives on specified topic val callback: MqttCallback = new MqttCallback() { @@ -103,7 +97,15 @@ class MQTTReceiver( } } - // Set up callback for MqttClient + // Set up callback for MqttClient. This needs to happen before + // connecting or subscribing, otherwise messages may be lost client.setCallback(callback) + + // Connect to MqttBroker + client.connect() + + // Subscribe to Mqtt topic + client.subscribe(topic) + } } diff --git a/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala b/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala index fe53a29cba0c9..e84adc088a680 100644 --- a/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala +++ b/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala @@ -18,6 +18,8 @@ package org.apache.spark.streaming.mqtt import java.net.{URI, ServerSocket} +import java.util.concurrent.CountDownLatch +import java.util.concurrent.TimeUnit import scala.concurrent.duration._ import scala.language.postfixOps @@ -32,6 +34,8 @@ import org.scalatest.concurrent.Eventually import org.apache.spark.streaming.{Milliseconds, StreamingContext} import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.dstream.ReceiverInputDStream +import org.apache.spark.streaming.scheduler.StreamingListener +import org.apache.spark.streaming.scheduler.StreamingListenerReceiverStarted import org.apache.spark.SparkConf import org.apache.spark.util.Utils @@ -67,7 +71,7 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { val sendMessage = "MQTT demo for spark streaming" val receiveStream: ReceiverInputDStream[String] = MQTTUtils.createStream(ssc, "tcp:" + brokerUri, topic, StorageLevel.MEMORY_ONLY) - var receiveMessage: List[String] = List() + @volatile var receiveMessage: List[String] = List() receiveStream.foreachRDD { rdd => if (rdd.collect.length > 0) { receiveMessage = receiveMessage ::: List(rdd.first) @@ -75,6 +79,11 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { } } ssc.start() + + // wait for the receiver to start before publishing data, or we risk failing + // the test nondeterministically. See SPARK-4631 + waitForReceiverToStart() + publishData(sendMessage) eventually(timeout(10000 milliseconds), interval(100 milliseconds)) { assert(sendMessage.equals(receiveMessage(0))) @@ -121,8 +130,14 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { val message: MqttMessage = new MqttMessage(data.getBytes("utf-8")) message.setQos(1) message.setRetained(true) - for (i <- 0 to 100) { - msgTopic.publish(message) + + for (i <- 0 to 10) { + try { + msgTopic.publish(message) + } catch { + case e: MqttException if e.getReasonCode == MqttException.REASON_CODE_MAX_INFLIGHT => + Thread.sleep(50) // wait for Spark streaming to consume something from the message queue + } } } } finally { @@ -131,4 +146,18 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { client = null } } + + /** + * Block until at least one receiver has started or timeout occurs. + */ + private def waitForReceiverToStart() = { + val latch = new CountDownLatch(1) + ssc.addStreamingListener(new StreamingListener { + override def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { + latch.countDown() + } + }) + + assert(latch.await(10, TimeUnit.SECONDS), "Timeout waiting for receiver to start.") + } } From 2321dd1ef9b0ae70b686904fca4981549cc2d9b2 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Mon, 2 Feb 2015 14:00:14 -0800 Subject: [PATCH 18/28] [HOTFIX] Add jetty references to build for YARN module. --- yarn/pom.xml | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/yarn/pom.xml b/yarn/pom.xml index 7595549e4b6dc..6bdf9d2416823 100644 --- a/yarn/pom.xml +++ b/yarn/pom.xml @@ -58,6 +58,30 @@ org.apache.hadoop hadoop-client
+ + + + com.google.guava + guava + + + org.eclipse.jetty + jetty-server + + + org.eclipse.jetty + jetty-plus + + + org.eclipse.jetty + jetty-util + + + org.eclipse.jetty + jetty-http + + + org.apache.hadoop hadoop-yarn-server-tests From 52f5754f45370f98e577a2aa96accf3ee2e2c8e2 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Wed, 21 Jan 2015 14:38:14 -0800 Subject: [PATCH 19/28] Make sure only owner can read / write to directories created for the job. Whenever a directory is created by the utility method, immediately restrict its permissions so that only the owner has access to its contents. Signed-off-by: Josh Rosen --- .../org/apache/spark/HttpFileServer.scala | 2 +- .../scala/org/apache/spark/SparkEnv.scala | 2 +- .../spark/broadcast/HttpBroadcast.scala | 2 +- .../spark/storage/DiskBlockManager.scala | 34 ++------ .../scala/org/apache/spark/util/Utils.scala | 77 +++++++++++++------ python/pyspark/context.py | 3 +- .../apache/spark/streaming/JavaAPISuite.java | 4 +- 7 files changed, 69 insertions(+), 55 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/HttpFileServer.scala b/core/src/main/scala/org/apache/spark/HttpFileServer.scala index 677c5e0f89d72..3f33332a81eaf 100644 --- a/core/src/main/scala/org/apache/spark/HttpFileServer.scala +++ b/core/src/main/scala/org/apache/spark/HttpFileServer.scala @@ -36,7 +36,7 @@ private[spark] class HttpFileServer( var serverUri : String = null def initialize() { - baseDir = Utils.createTempDir() + baseDir = Utils.createTempDir(Utils.getLocalDir(conf), "httpd") fileDir = new File(baseDir, "files") jarDir = new File(baseDir, "jars") fileDir.mkdir() diff --git a/core/src/main/scala/org/apache/spark/SparkEnv.scala b/core/src/main/scala/org/apache/spark/SparkEnv.scala index 1264a8126153b..f25db7f8de565 100644 --- a/core/src/main/scala/org/apache/spark/SparkEnv.scala +++ b/core/src/main/scala/org/apache/spark/SparkEnv.scala @@ -339,7 +339,7 @@ object SparkEnv extends Logging { // this is a temporary directory; in distributed mode, this is the executor's current working // directory. val sparkFilesDir: String = if (isDriver) { - Utils.createTempDir().getAbsolutePath + Utils.createTempDir(Utils.getLocalDir(conf), "userFiles").getAbsolutePath } else { "." } diff --git a/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala b/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala index 31d6958c403b3..ea98051532a0a 100644 --- a/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala +++ b/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala @@ -151,7 +151,7 @@ private[broadcast] object HttpBroadcast extends Logging { } private def createServer(conf: SparkConf) { - broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf)) + broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf), "broadcast") val broadcastPort = conf.getInt("spark.broadcast.port", 0) server = new HttpServer(conf, broadcastDir, securityManager, broadcastPort, "HTTP broadcast server") diff --git a/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala b/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala index af05eb3ca69ce..53eaedacbf291 100644 --- a/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala +++ b/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala @@ -17,9 +17,8 @@ package org.apache.spark.storage +import java.util.UUID import java.io.{IOException, File} -import java.text.SimpleDateFormat -import java.util.{Date, Random, UUID} import org.apache.spark.{SparkConf, Logging} import org.apache.spark.executor.ExecutorExitCode @@ -37,7 +36,6 @@ import org.apache.spark.util.Utils private[spark] class DiskBlockManager(blockManager: BlockManager, conf: SparkConf) extends Logging { - private val MAX_DIR_CREATION_ATTEMPTS: Int = 10 private[spark] val subDirsPerLocalDir = blockManager.conf.getInt("spark.diskStore.subDirectories", 64) @@ -123,33 +121,15 @@ private[spark] class DiskBlockManager(blockManager: BlockManager, conf: SparkCon } private def createLocalDirs(conf: SparkConf): Array[File] = { - val dateFormat = new SimpleDateFormat("yyyyMMddHHmmss") Utils.getOrCreateLocalRootDirs(conf).flatMap { rootDir => - var foundLocalDir = false - var localDir: File = null - var localDirId: String = null - var tries = 0 - val rand = new Random() - while (!foundLocalDir && tries < MAX_DIR_CREATION_ATTEMPTS) { - tries += 1 - try { - localDirId = "%s-%04x".format(dateFormat.format(new Date), rand.nextInt(65536)) - localDir = new File(rootDir, s"spark-local-$localDirId") - if (!localDir.exists) { - foundLocalDir = localDir.mkdirs() - } - } catch { - case e: Exception => - logWarning(s"Attempt $tries to create local dir $localDir failed", e) - } - } - if (!foundLocalDir) { - logError(s"Failed $MAX_DIR_CREATION_ATTEMPTS attempts to create local dir in $rootDir." + - " Ignoring this directory.") - None - } else { + try { + val localDir = Utils.createDirectory(rootDir, "blockmgr") logInfo(s"Created local directory at $localDir") Some(localDir) + } catch { + case e: IOException => + logError(s"Failed to create local dir in $rootDir. Ignoring this directory.", e) + None } } } diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index 86ac307fc84ba..e0236d23c41ba 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -60,6 +60,8 @@ private[spark] object CallSite { private[spark] object Utils extends Logging { val random = new Random() + private val MAX_DIR_CREATION_ATTEMPTS: Int = 10 + /** Serialize an object using Java serialization */ def serialize[T](o: T): Array[Byte] = { val bos = new ByteArrayOutputStream() @@ -246,13 +248,28 @@ private[spark] object Utils extends Logging { retval } + /** + * JDK equivalent of `chmod 700 file`. + * + * @param file the file whose permissions will be modified + * @return true if the permissions were successfully changed, false otherwise. + */ + def chmod700(file: File): Boolean = { + file.setReadable(false, false) && + file.setReadable(true, true) && + file.setWritable(false, false) && + file.setWritable(true, true) && + file.setExecutable(false, false) && + file.setExecutable(true, true) + } + /** * Create a directory inside the given parent directory. The directory is guaranteed to be * newly created, and is not marked for automatic deletion. */ - def createDirectory(root: String): File = { + def createDirectory(root: String, namePrefix: String = "spark"): File = { var attempts = 0 - val maxAttempts = 10 + val maxAttempts = MAX_DIR_CREATION_ATTEMPTS var dir: File = null while (dir == null) { attempts += 1 @@ -264,6 +281,11 @@ private[spark] object Utils extends Logging { dir = new File(root, "spark-" + UUID.randomUUID.toString) if (dir.exists() || !dir.mkdirs()) { dir = null + } else { + if (!chmod700(dir)) { + dir.delete() + dir = null + } } } catch { case e: SecurityException => dir = null; } } @@ -275,8 +297,10 @@ private[spark] object Utils extends Logging { * Create a temporary directory inside the given parent directory. The directory will be * automatically deleted when the VM shuts down. */ - def createTempDir(root: String = System.getProperty("java.io.tmpdir")): File = { - val dir = createDirectory(root) + def createTempDir( + root: String = System.getProperty("java.io.tmpdir"), + namePrefix: String = "spark"): File = { + val dir = createDirectory(root, namePrefix) registerShutdownDeleteDir(dir) dir } @@ -599,26 +623,35 @@ private[spark] object Utils extends Logging { * If no directories could be created, this will return an empty list. */ private[spark] def getOrCreateLocalRootDirs(conf: SparkConf): Array[String] = { - val confValue = if (isRunningInYarnContainer(conf)) { + if (isRunningInYarnContainer(conf)) { // If we are in yarn mode, systems can have different disk layouts so we must set it - // to what Yarn on this system said was available. - getYarnLocalDirs(conf) + // to what Yarn on this system said was available. Note this assumes that Yarn has + // created the directories already, and that they are secured so that only the + // user has access to them. + getYarnLocalDirs(conf).split(",") } else { - Option(conf.getenv("SPARK_LOCAL_DIRS")).getOrElse( - conf.get("spark.local.dir", System.getProperty("java.io.tmpdir"))) - } - val rootDirs = confValue.split(',') - logDebug(s"Getting/creating local root dirs at '$confValue'") - - rootDirs.flatMap { rootDir => - val localDir: File = new File(rootDir) - val foundLocalDir = localDir.exists || localDir.mkdirs() - if (!foundLocalDir) { - logError(s"Failed to create local root dir in $rootDir. Ignoring this directory.") - None - } else { - Some(rootDir) - } + // In non-Yarn mode (or for the driver in yarn-client mode), we cannot trust the user + // configuration to point to a secure directory. So create a subdirectory with restricted + // permissions under each listed directory. + Option(conf.getenv("SPARK_LOCAL_DIRS")) + .getOrElse(conf.get("spark.local.dir", System.getProperty("java.io.tmpdir"))) + .split(",") + .flatMap { root => + try { + val rootDir = new File(root) + if (rootDir.exists || rootDir.mkdirs()) { + Some(createDirectory(root).getAbsolutePath()) + } else { + logError(s"Failed to create dir in $root. Ignoring this directory.") + None + } + } catch { + case e: IOException => + logError(s"Failed to create local root dir in $root. Ignoring this directory.") + None + } + } + .toArray } } diff --git a/python/pyspark/context.py b/python/pyspark/context.py index c0dec16ac1b25..bf1f61c8504ed 100644 --- a/python/pyspark/context.py +++ b/python/pyspark/context.py @@ -192,7 +192,8 @@ def _do_init(self, master, appName, sparkHome, pyFiles, environment, batchSize, # Create a temporary directory inside spark.local.dir: local_dir = self._jvm.org.apache.spark.util.Utils.getLocalDir(self._jsc.sc().conf()) self._temp_dir = \ - self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir).getAbsolutePath() + self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir, "pyspark") \ + .getAbsolutePath() # profiling stats collected for each PythonRDD if self._conf.get("spark.python.profile", "false") == "true": diff --git a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java index d4c40745658c2..2df8cf6a8a3df 100644 --- a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java +++ b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java @@ -1769,7 +1769,7 @@ public Iterable call(InputStream in) throws IOException { @SuppressWarnings("unchecked") @Test public void testTextFileStream() throws IOException { - File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir")); + File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir"), "spark"); List> expected = fileTestPrepare(testDir); JavaDStream input = ssc.textFileStream(testDir.toString()); @@ -1782,7 +1782,7 @@ public void testTextFileStream() throws IOException { @SuppressWarnings("unchecked") @Test public void testFileStream() throws IOException { - File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir")); + File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir"), "spark"); List> expected = fileTestPrepare(testDir); JavaPairInputDStream inputStream = ssc.fileStream( From bff65b5cca7ae0c6c49e6a04638d18104be4be7c Mon Sep 17 00:00:00 2001 From: Martin Weindel Date: Mon, 2 Feb 2015 13:46:18 -0800 Subject: [PATCH 20/28] Disabling Utils.chmod700 for Windows This patch makes Spark 1.2.1rc2 work again on Windows. Without it you get following log output on creating a Spark context: INFO org.apache.spark.SparkEnv:59 - Registering BlockManagerMaster ERROR org.apache.spark.util.Utils:75 - Failed to create local root dir in .... Ignoring this directory. ERROR org.apache.spark.storage.DiskBlockManager:75 - Failed to create any local dir. Author: Martin Weindel Author: mweindel Closes #4299 from MartinWeindel/branch-1.2 and squashes the following commits: 535cb7f [Martin Weindel] fixed last commit f17072e [Martin Weindel] moved condition to caller to avoid confusion on chmod700() return value 4de5e91 [Martin Weindel] reverted to unix line ends fe2740b [mweindel] moved comment ac4749c [mweindel] fixed chmod700 for Windows --- core/src/main/scala/org/apache/spark/util/Utils.scala | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index e0236d23c41ba..703b23add834b 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -282,7 +282,9 @@ private[spark] object Utils extends Logging { if (dir.exists() || !dir.mkdirs()) { dir = null } else { - if (!chmod700(dir)) { + // Restrict file permissions via chmod if available. + // For Windows this step is ignored. + if (!isWindows && !chmod700(dir)) { dir.delete() dir = null } From 5a5526164bdf9ecf1306d4570e816eb4df5cfd2b Mon Sep 17 00:00:00 2001 From: Jacek Lewandowski Date: Mon, 2 Feb 2015 14:07:19 -0800 Subject: [PATCH 21/28] SPARK-5425: Use synchronised methods in system properties to create SparkConf SPARK-5425: Fixed usages of system properties This patch fixes few problems caused by the fact that the Scala wrapper over system properties is not thread-safe and is basically invalid because it doesn't take into account the default values which could have been set in the properties object. The problem is fixed by modifying `Utils.getSystemProperties` method so that it uses `stringPropertyNames` method of the `Properties` class, which is thread-safe (internally it creates a defensive copy in a synchronized method) and returns keys of the properties which were set explicitly and which are defined as defaults. The other related problem, which is fixed here. was in `ResetSystemProperties` mix-in. It created a copy of the system properties in the wrong way. This patch also introduces a test case for thread-safeness of SparkConf creation. Refer to the discussion in https://github.com/apache/spark/pull/4220 for more details. Author: Jacek Lewandowski Closes #4222 from jacek-lewandowski/SPARK-5425-1.3 and squashes the following commits: 03da61b [Jacek Lewandowski] SPARK-5425: Modified Utils.getSystemProperties to return a map of all system properties - explicit + defaults 8faf2ea [Jacek Lewandowski] SPARK-5425: Use SerializationUtils to save properties in ResetSystemProperties trait 71aa572 [Jacek Lewandowski] SPARK-5425: Use synchronised methods in system properties to create SparkConf --- .../scala/org/apache/spark/SparkConf.scala | 5 ++-- .../scala/org/apache/spark/util/Utils.scala | 11 +++++--- .../org/apache/spark/SparkConfSuite.scala | 25 +++++++++++++++++++ .../spark/util/ResetSystemProperties.scala | 7 +++++- .../spark/examples/DriverSubmissionTest.scala | 4 ++- 5 files changed, 45 insertions(+), 7 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkConf.scala b/core/src/main/scala/org/apache/spark/SparkConf.scala index cd91c8f87547b..4d4c69d42da98 100644 --- a/core/src/main/scala/org/apache/spark/SparkConf.scala +++ b/core/src/main/scala/org/apache/spark/SparkConf.scala @@ -23,6 +23,7 @@ import scala.collection.JavaConverters._ import scala.collection.mutable.LinkedHashSet import org.apache.spark.serializer.KryoSerializer +import org.apache.spark.util.Utils /** * Configuration for a Spark application. Used to set various Spark parameters as key-value pairs. @@ -53,8 +54,8 @@ class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging { if (loadDefaults) { // Load any spark.* system properties - for ((k, v) <- System.getProperties.asScala if k.startsWith("spark.")) { - set(k, v) + for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) { + set(key, value) } } diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index 703b23add834b..31850b50bdba7 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -1347,9 +1347,14 @@ private[spark] object Utils extends Logging { hashAbs } - /** Returns a copy of the system properties that is thread-safe to iterator over. */ - def getSystemProperties(): Map[String, String] = { - System.getProperties.clone().asInstanceOf[java.util.Properties].toMap[String, String] + /** Returns the system properties map that is thread-safe to iterator over. It gets the + * properties which have been set explicitly, as well as those for which only a default value + * has been defined. */ + def getSystemProperties: Map[String, String] = { + val sysProps = for (key <- System.getProperties.stringPropertyNames()) yield + (key, System.getProperty(key)) + + sysProps.toMap } /** diff --git a/core/src/test/scala/org/apache/spark/SparkConfSuite.scala b/core/src/test/scala/org/apache/spark/SparkConfSuite.scala index 790976a5ac308..e08210ae60d17 100644 --- a/core/src/test/scala/org/apache/spark/SparkConfSuite.scala +++ b/core/src/test/scala/org/apache/spark/SparkConfSuite.scala @@ -17,6 +17,10 @@ package org.apache.spark +import java.util.concurrent.{TimeUnit, Executors} + +import scala.util.{Try, Random} + import org.scalatest.FunSuite import org.apache.spark.serializer.{KryoRegistrator, KryoSerializer} import org.apache.spark.util.ResetSystemProperties @@ -123,6 +127,27 @@ class SparkConfSuite extends FunSuite with LocalSparkContext with ResetSystemPro assert(conf.get("spark.test.a.b.c") === "a.b.c") } + test("Thread safeness - SPARK-5425") { + import scala.collection.JavaConversions._ + val executor = Executors.newSingleThreadScheduledExecutor() + val sf = executor.scheduleAtFixedRate(new Runnable { + override def run(): Unit = + System.setProperty("spark.5425." + Random.nextInt(), Random.nextInt().toString) + }, 0, 1, TimeUnit.MILLISECONDS) + + try { + val t0 = System.currentTimeMillis() + while ((System.currentTimeMillis() - t0) < 1000) { + val conf = Try(new SparkConf(loadDefaults = true)) + assert(conf.isSuccess === true) + } + } finally { + executor.shutdownNow() + for (key <- System.getProperties.stringPropertyNames() if key.startsWith("spark.5425.")) + System.getProperties.remove(key) + } + } + test("register kryo classes through registerKryoClasses") { val conf = new SparkConf().set("spark.kryo.registrationRequired", "true") diff --git a/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala b/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala index d4b92f33dd9e6..bad1aa99952cf 100644 --- a/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala +++ b/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala @@ -19,6 +19,7 @@ package org.apache.spark.util import java.util.Properties +import org.apache.commons.lang3.SerializationUtils import org.scalatest.{BeforeAndAfterEach, Suite} /** @@ -42,7 +43,11 @@ private[spark] trait ResetSystemProperties extends BeforeAndAfterEach { this: Su var oldProperties: Properties = null override def beforeEach(): Unit = { - oldProperties = new Properties(System.getProperties) + // we need SerializationUtils.clone instead of `new Properties(System.getProperties()` because + // the later way of creating a copy does not copy the properties but it initializes a new + // Properties object with the given properties as defaults. They are not recognized at all + // by standard Scala wrapper over Java Properties then. + oldProperties = SerializationUtils.clone(System.getProperties) super.beforeEach() } diff --git a/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala b/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala index 65251e93190f0..e757283823fc3 100644 --- a/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala +++ b/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala @@ -19,6 +19,8 @@ package org.apache.spark.examples import scala.collection.JavaConversions._ +import org.apache.spark.util.Utils + /** Prints out environmental information, sleeps, and then exits. Made to * test driver submission in the standalone scheduler. */ object DriverSubmissionTest { @@ -30,7 +32,7 @@ object DriverSubmissionTest { val numSecondsToSleep = args(0).toInt val env = System.getenv() - val properties = System.getProperties() + val properties = Utils.getSystemProperties println("Environment variables containing SPARK_TEST:") env.filter{case (k, v) => k.contains("SPARK_TEST")}.foreach(println) From 842d00032d0b09fb1f9cfc77359b77693e70a614 Mon Sep 17 00:00:00 2001 From: "Joseph K. Bradley" Date: Mon, 2 Feb 2015 14:34:48 -0800 Subject: [PATCH 22/28] [SPARK-5461] [graphx] Add isCheckpointed, getCheckpointedFiles methods to Graph Added the 2 methods to Graph and GraphImpl. Both make calls to the underlying vertex and edge RDDs. This is needed for another PR (for LDA): [https://github.com/apache/spark/pull/4047] Notes: * getCheckpointedFiles is plural and returns a Seq[String] instead of an Option[String]. * I attempted to test to make sure the methods returned the correct values after checkpointing. It did not work; I guess that checkpointing does not occur quickly enough? I noticed that there are not checkpointing tests for RDDs; is it just hard to test well? CC: rxin CC: mengxr (since related to LDA) Author: Joseph K. Bradley Closes #4253 from jkbradley/graphx-checkpoint and squashes the following commits: b680148 [Joseph K. Bradley] added class tag to firstParent call in VertexRDDImpl.isCheckpointed, though not needed to compile 250810e [Joseph K. Bradley] In EdgeRDDImple, VertexRDDImpl, added transient back to partitionsRDD, and made isCheckpointed check firstParent instead of partitionsRDD 695b7a3 [Joseph K. Bradley] changed partitionsRDD in EdgeRDDImpl, VertexRDDImpl to be non-transient cc00767 [Joseph K. Bradley] added overrides for isCheckpointed, getCheckpointFile in EdgeRDDImpl, VertexRDDImpl. The corresponding Graph methods now work. 188665f [Joseph K. Bradley] improved documentation 235738c [Joseph K. Bradley] Added isCheckpointed and getCheckpointFiles to Graph, GraphImpl --- .../main/scala/org/apache/spark/graphx/Graph.scala | 12 ++++++++++++ .../org/apache/spark/graphx/impl/EdgeRDDImpl.scala | 10 +++++++++- .../org/apache/spark/graphx/impl/GraphImpl.scala | 11 +++++++++++ .../org/apache/spark/graphx/impl/VertexRDDImpl.scala | 10 +++++++++- .../scala/org/apache/spark/graphx/GraphSuite.scala | 4 ++++ project/MimaExcludes.scala | 6 ++++++ 6 files changed, 51 insertions(+), 2 deletions(-) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala b/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala index ab56580a3abc8..8494d06b1cdb7 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala @@ -104,6 +104,18 @@ abstract class Graph[VD: ClassTag, ED: ClassTag] protected () extends Serializab */ def checkpoint(): Unit + /** + * Return whether this Graph has been checkpointed or not. + * This returns true iff both the vertices RDD and edges RDD have been checkpointed. + */ + def isCheckpointed: Boolean + + /** + * Gets the name of the files to which this Graph was checkpointed. + * (The vertices RDD and edges RDD are checkpointed separately.) + */ + def getCheckpointFiles: Seq[String] + /** * Uncaches both vertices and edges of this graph. This is useful in iterative algorithms that * build a new graph in each iteration. diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala index f1550ac2e18ad..6c35d7029e078 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala @@ -73,7 +73,15 @@ class EdgeRDDImpl[ED: ClassTag, VD: ClassTag] private[graphx] ( override def checkpoint() = { partitionsRDD.checkpoint() } - + + override def isCheckpointed: Boolean = { + firstParent[(PartitionID, EdgePartition[ED, VD])].isCheckpointed + } + + override def getCheckpointFile: Option[String] = { + partitionsRDD.getCheckpointFile + } + /** The number of edges in the RDD. */ override def count(): Long = { partitionsRDD.map(_._2.size.toLong).reduce(_ + _) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala index 3f4a900d5b601..90a74d23a26cc 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala @@ -70,6 +70,17 @@ class GraphImpl[VD: ClassTag, ED: ClassTag] protected ( replicatedVertexView.edges.checkpoint() } + override def isCheckpointed: Boolean = { + vertices.isCheckpointed && replicatedVertexView.edges.isCheckpointed + } + + override def getCheckpointFiles: Seq[String] = { + Seq(vertices.getCheckpointFile, replicatedVertexView.edges.getCheckpointFile).flatMap { + case Some(path) => Seq(path) + case None => Seq() + } + } + override def unpersist(blocking: Boolean = true): Graph[VD, ED] = { unpersistVertices(blocking) replicatedVertexView.edges.unpersist(blocking) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala index 9732c5b00c6d9..3e4968d6c0d6f 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala @@ -74,7 +74,15 @@ class VertexRDDImpl[VD] private[graphx] ( override def checkpoint() = { partitionsRDD.checkpoint() } - + + override def isCheckpointed: Boolean = { + firstParent[ShippableVertexPartition[VD]].isCheckpointed + } + + override def getCheckpointFile: Option[String] = { + partitionsRDD.getCheckpointFile + } + /** The number of vertices in the RDD. */ override def count(): Long = { partitionsRDD.map(_.size).reduce(_ + _) diff --git a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala index ed9876b8dc21c..59a57ba7a33f1 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala @@ -375,6 +375,8 @@ class GraphSuite extends FunSuite with LocalSparkContext { val ring = (0L to 100L).zip((1L to 99L) :+ 0L).map { case (a, b) => Edge(a, b, 1)} val rdd = sc.parallelize(ring) val graph = Graph.fromEdges(rdd, 1.0F) + assert(!graph.isCheckpointed) + assert(graph.getCheckpointFiles.size === 0) graph.checkpoint() graph.edges.map(_.attr).count() graph.vertices.map(_._2).count() @@ -383,6 +385,8 @@ class GraphSuite extends FunSuite with LocalSparkContext { val verticesDependencies = graph.vertices.partitionsRDD.dependencies assert(edgesDependencies.forall(_.rdd.isInstanceOf[CheckpointRDD[_]])) assert(verticesDependencies.forall(_.rdd.isInstanceOf[CheckpointRDD[_]])) + assert(graph.isCheckpointed) + assert(graph.getCheckpointFiles.size === 2) } } diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index 14ba03ed4634b..45be1db9a5ebe 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -127,6 +127,12 @@ object MimaExcludes { // SPARK-5315 Spark Streaming Java API returns Scala DStream ProblemFilters.exclude[MissingMethodProblem]( "org.apache.spark.streaming.api.java.JavaDStreamLike.reduceByWindow") + ) ++ Seq( + // SPARK-5461 Graph should have isCheckpointed, getCheckpointFiles methods + ProblemFilters.exclude[MissingMethodProblem]( + "org.apache.spark.graphx.Graph.getCheckpointFiles"), + ProblemFilters.exclude[MissingMethodProblem]( + "org.apache.spark.graphx.Graph.isCheckpointed") ) case v if v.startsWith("1.2") => From 830934976e8cf9e894bd3e5758fb941cad5d2f0b Mon Sep 17 00:00:00 2001 From: Sandy Ryza Date: Mon, 2 Feb 2015 14:52:46 -0800 Subject: [PATCH 23/28] SPARK-5500. Document that feeding hadoopFile into a shuffle operation wi... ...ll cause problems Author: Sandy Ryza Closes #4293 from sryza/sandy-spark-5500 and squashes the following commits: e9ce742 [Sandy Ryza] Change to warning cc46e52 [Sandy Ryza] Add instructions and extend to NewHadoopRDD 6e1932a [Sandy Ryza] Throw exception on cache 0f6c4eb [Sandy Ryza] SPARK-5500. Document that feeding hadoopFile into a shuffle operation will cause problems --- .../scala/org/apache/spark/SparkContext.scala | 69 +++++++++++-------- .../org/apache/spark/rdd/HadoopRDD.scala | 12 +++- .../org/apache/spark/rdd/NewHadoopRDD.scala | 17 +++-- 3 files changed, 62 insertions(+), 36 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 3c61c10820ba9..228076f01c841 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -687,9 +687,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * @param minPartitions Minimum number of Hadoop Splits to generate. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def hadoopRDD[K, V]( conf: JobConf, @@ -705,12 +706,13 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli } /** Get an RDD for a Hadoop file with an arbitrary InputFormat - * - * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. - * */ + * + * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. + */ def hadoopFile[K, V]( path: String, inputFormatClass: Class[_ <: InputFormat[K, V]], @@ -741,9 +743,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * }}} * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def hadoopFile[K, V, F <: InputFormat[K, V]] (path: String, minPartitions: Int) @@ -764,9 +767,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * }}} * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def hadoopFile[K, V, F <: InputFormat[K, V]](path: String) (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = @@ -788,9 +792,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * and extra configuration options to pass to the input format. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]]( path: String, @@ -810,9 +815,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * and extra configuration options to pass to the input format. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def newAPIHadoopRDD[K, V, F <: NewInputFormat[K, V]]( conf: Configuration = hadoopConfiguration, @@ -826,9 +832,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli /** Get an RDD for a Hadoop SequenceFile with given key and value types. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def sequenceFile[K, V](path: String, keyClass: Class[K], @@ -843,9 +850,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli /** Get an RDD for a Hadoop SequenceFile with given key and value types. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. * */ def sequenceFile[K, V](path: String, keyClass: Class[K], valueClass: Class[V]): RDD[(K, V)] = { assertNotStopped() @@ -869,9 +877,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * allow it to figure out the Writable class to use in the subclass case. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def sequenceFile[K, V] (path: String, minPartitions: Int = defaultMinPartitions) diff --git a/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala index c3e3931042de2..89adddcf0ac36 100644 --- a/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala @@ -42,10 +42,11 @@ import org.apache.spark._ import org.apache.spark.annotation.DeveloperApi import org.apache.spark.broadcast.Broadcast import org.apache.spark.deploy.SparkHadoopUtil -import org.apache.spark.executor.{DataReadMethod, InputMetrics} +import org.apache.spark.executor.DataReadMethod import org.apache.spark.rdd.HadoopRDD.HadoopMapPartitionsWithSplitRDD import org.apache.spark.util.{NextIterator, Utils} import org.apache.spark.scheduler.{HostTaskLocation, HDFSCacheTaskLocation} +import org.apache.spark.storage.StorageLevel /** * A Spark split class that wraps around a Hadoop InputSplit. @@ -308,6 +309,15 @@ class HadoopRDD[K, V]( // Do nothing. Hadoop RDD should not be checkpointed. } + override def persist(storageLevel: StorageLevel): this.type = { + if (storageLevel.deserialized) { + logWarning("Caching NewHadoopRDDs as deserialized objects usually leads to undesired" + + " behavior because Hadoop's RecordReader reuses the same Writable object for all records." + + " Use a map transformation to make copies of the records.") + } + super.persist(storageLevel) + } + def getConf: Configuration = getJobConf() } diff --git a/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala b/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala index d86f95ac3e485..44b9ffd2a53fd 100644 --- a/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala @@ -29,16 +29,13 @@ import org.apache.hadoop.mapreduce.lib.input.{CombineFileSplit, FileSplit} import org.apache.spark.annotation.DeveloperApi import org.apache.spark.input.WholeTextFileInputFormat -import org.apache.spark.InterruptibleIterator -import org.apache.spark.Logging -import org.apache.spark.Partition -import org.apache.spark.SerializableWritable -import org.apache.spark.{SparkContext, TaskContext} +import org.apache.spark._ import org.apache.spark.executor.DataReadMethod import org.apache.spark.mapreduce.SparkHadoopMapReduceUtil import org.apache.spark.rdd.NewHadoopRDD.NewHadoopMapPartitionsWithSplitRDD import org.apache.spark.util.Utils import org.apache.spark.deploy.SparkHadoopUtil +import org.apache.spark.storage.StorageLevel private[spark] class NewHadoopPartition( rddId: Int, @@ -211,6 +208,16 @@ class NewHadoopRDD[K, V]( locs.getOrElse(split.getLocations.filter(_ != "localhost")) } + override def persist(storageLevel: StorageLevel): this.type = { + if (storageLevel.deserialized) { + logWarning("Caching NewHadoopRDDs as deserialized objects usually leads to undesired" + + " behavior because Hadoop's RecordReader reuses the same Writable object for all records." + + " Use a map transformation to make copies of the records.") + } + super.persist(storageLevel) + } + + def getConf: Configuration = confBroadcast.value.value } From 1646f89d967913ee1f231d9606f8502d13c25804 Mon Sep 17 00:00:00 2001 From: Daoyuan Wang Date: Mon, 2 Feb 2015 15:49:22 -0800 Subject: [PATCH 24/28] [SPARK-4508] [SQL] build native date type to conform behavior to Hive Store daysSinceEpoch as an Int value(4 bytes) to represent DateType, instead of using java.sql.Date(8 bytes as Long) in catalyst row. This ensures the same comparison behavior of Hive and Catalyst. Subsumes #3381 I thinks there are already some tests in JavaSQLSuite, and for python it will not affect python's datetime class. Author: Daoyuan Wang Closes #3732 from adrian-wang/datenative and squashes the following commits: 0ed0fdc [Daoyuan Wang] fix test data a2fdd4e [Daoyuan Wang] getDate c37832b [Daoyuan Wang] row to catalyst f0005b1 [Daoyuan Wang] add date in sql parser and java type conversion 024c9a6 [Daoyuan Wang] clean some import order d6715fc [Daoyuan Wang] refactoring Date as Primitive Int internally 374abd5 [Daoyuan Wang] spark native date type support --- .../main/scala/org/apache/spark/sql/Row.scala | 2 +- .../spark/sql/catalyst/ScalaReflection.scala | 9 +-- .../apache/spark/sql/catalyst/SqlParser.scala | 2 + .../spark/sql/catalyst/expressions/Cast.scala | 53 +++++++--------- .../expressions/codegen/CodeGenerator.scala | 3 + .../sql/catalyst/expressions/literals.scala | 2 +- .../apache/spark/sql/types/DateUtils.scala | 60 +++++++++++++++++++ .../apache/spark/sql/types/dataTypes.scala | 12 ++-- .../ExpressionEvaluationSuite.scala | 28 ++++----- .../spark/sql/types/DataTypeSuite.scala | 2 +- .../spark/sql/columnar/ColumnStats.scala | 19 +----- .../spark/sql/columnar/ColumnType.scala | 13 ++-- .../spark/sql/execution/pythonUdfs.scala | 4 +- .../org/apache/spark/sql/json/JsonRDD.scala | 6 +- .../org/apache/spark/sql/SQLQuerySuite.scala | 7 +++ .../sql/ScalaReflectionRelationSuite.scala | 3 +- .../spark/sql/columnar/ColumnStatsSuite.scala | 2 +- .../spark/sql/columnar/ColumnTypeSuite.scala | 6 +- .../sql/columnar/ColumnarTestUtils.scala | 6 +- .../org/apache/spark/sql/json/JsonSuite.scala | 7 ++- .../execution/HiveCompatibilitySuite.scala | 1 + .../apache/spark/sql/hive/HiveContext.scala | 4 +- .../spark/sql/hive/HiveInspectors.scala | 11 +++- .../apache/spark/sql/hive/TableReader.scala | 3 +- ...te cast-0-a7cd69b80c77a771a2c955db666be53d | 1 + ... test 1-0-bde89be08a12361073ff658fef768b7e | 1 + ... test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 | 1 + .../date_1-0-50131c0ba7b7a6b65c789a5a8497bada | 1 + ...date_1-1-23edf29bf7376c70d5ecf12720f4b1eb} | 0 ...ate_1-10-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...ate_1-11-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...ate_1-12-480c5f024a28232b7857be327c992509} | 0 ...ate_1-13-4c0ed7fcb75770d8790575b586bf14f4} | 0 ...date_1-14-44fc74c1993062c0a9522199ff27fea} | 0 ...ate_1-15-4855a66124b16d1d0d003235995ac06b} | 0 ...ate_1-16-8bc190dba0f641840b5e1e198a14c55b} | 0 ...ate_1-17-23edf29bf7376c70d5ecf12720f4b1eb} | 0 ...date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b} | 0 ... date_1-3-26b5c291400dfde455b3c1b878b71d0} | 0 ...date_1-4-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-5-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-6-559d01fb0b42c42f0c4927fa0f9deac4} | 0 ...date_1-7-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-8-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-9-8306558e0eabe936ac33dabaaa17fea4} | 0 .../spark/sql/hive/HiveInspectorSuite.scala | 4 +- .../sql/hive/execution/HiveQuerySuite.scala | 26 +++++++- .../org/apache/spark/sql/hive/Shim12.scala | 2 +- .../org/apache/spark/sql/hive/Shim13.scala | 2 +- 49 files changed, 191 insertions(+), 112 deletions(-) create mode 100644 sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala create mode 100644 sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d create mode 100644 sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e create mode 100644 sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 create mode 100644 sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada rename sql/hive/src/test/resources/golden/{date_1-0-23edf29bf7376c70d5ecf12720f4b1eb => date_1-1-23edf29bf7376c70d5ecf12720f4b1eb} (100%) rename sql/hive/src/test/resources/golden/{date_1-3-df16364a220ff96a6ea1cd478cbc1d0b => date_1-10-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-11-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-11-480c5f024a28232b7857be327c992509 => date_1-12-480c5f024a28232b7857be327c992509} (100%) rename sql/hive/src/test/resources/golden/{date_1-12-4c0ed7fcb75770d8790575b586bf14f4 => date_1-13-4c0ed7fcb75770d8790575b586bf14f4} (100%) rename sql/hive/src/test/resources/golden/{date_1-13-44fc74c1993062c0a9522199ff27fea => date_1-14-44fc74c1993062c0a9522199ff27fea} (100%) rename sql/hive/src/test/resources/golden/{date_1-14-4855a66124b16d1d0d003235995ac06b => date_1-15-4855a66124b16d1d0d003235995ac06b} (100%) rename sql/hive/src/test/resources/golden/{date_1-15-8bc190dba0f641840b5e1e198a14c55b => date_1-16-8bc190dba0f641840b5e1e198a14c55b} (100%) rename sql/hive/src/test/resources/golden/{date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b => date_1-17-23edf29bf7376c70d5ecf12720f4b1eb} (100%) rename sql/hive/src/test/resources/golden/{date_1-16-23edf29bf7376c70d5ecf12720f4b1eb => date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b} (100%) rename sql/hive/src/test/resources/golden/{date_1-2-abdce0c0d14d3fc7441b7c134b02f99a => date_1-3-26b5c291400dfde455b3c1b878b71d0} (100%) rename sql/hive/src/test/resources/golden/{date_1-6-df16364a220ff96a6ea1cd478cbc1d0b => date_1-4-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-5-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-5-5e70fc74158fbfca38134174360de12d => date_1-6-559d01fb0b42c42f0c4927fa0f9deac4} (100%) rename sql/hive/src/test/resources/golden/{date_1-9-df16364a220ff96a6ea1cd478cbc1d0b => date_1-7-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-8-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-8-1d5c58095cd52ea539d869f2ab1ab67d => date_1-9-8306558e0eabe936ac33dabaaa17fea4} (100%) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala index 41bb4f012f2e1..3a70d25534968 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala @@ -20,7 +20,7 @@ package org.apache.spark.sql import scala.util.hashing.MurmurHash3 import org.apache.spark.sql.catalyst.expressions.GenericRow - +import org.apache.spark.sql.types.DateUtils object Row { /** diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala index e0db587efb08d..8e79e532ca564 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala @@ -17,14 +17,13 @@ package org.apache.spark.sql.catalyst -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.apache.spark.util.Utils import org.apache.spark.sql.catalyst.expressions.{GenericRow, Attribute, AttributeReference, Row} import org.apache.spark.sql.catalyst.plans.logical.LocalRelation import org.apache.spark.sql.types._ - /** * A default version of ScalaReflection that uses the runtime universe. */ @@ -72,6 +71,7 @@ trait ScalaReflection { }.toArray) case (d: BigDecimal, _) => Decimal(d) case (d: java.math.BigDecimal, _) => Decimal(d) + case (d: java.sql.Date, _) => DateUtils.fromJavaDate(d) case (other, _) => other } @@ -85,6 +85,7 @@ trait ScalaReflection { } case (r: Row, s: StructType) => convertRowToScala(r, s) case (d: Decimal, _: DecimalType) => d.toJavaBigDecimal + case (i: Int, DateType) => DateUtils.toJavaDate(i) case (other, _) => other } @@ -159,7 +160,7 @@ trait ScalaReflection { valueDataType, valueContainsNull = valueNullable), nullable = true) case t if t <:< typeOf[String] => Schema(StringType, nullable = true) case t if t <:< typeOf[Timestamp] => Schema(TimestampType, nullable = true) - case t if t <:< typeOf[Date] => Schema(DateType, nullable = true) + case t if t <:< typeOf[java.sql.Date] => Schema(DateType, nullable = true) case t if t <:< typeOf[BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[java.math.BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[Decimal] => Schema(DecimalType.Unlimited, nullable = true) @@ -191,7 +192,7 @@ trait ScalaReflection { case obj: LongType.JvmType => LongType case obj: FloatType.JvmType => FloatType case obj: DoubleType.JvmType => DoubleType - case obj: DateType.JvmType => DateType + case obj: java.sql.Date => DateType case obj: java.math.BigDecimal => DecimalType.Unlimited case obj: Decimal => DecimalType.Unlimited case obj: TimestampType.JvmType => TimestampType diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 594a423146d77..2ce8be8e24e85 100755 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -52,6 +52,7 @@ class SqlParser extends AbstractSparkSQLParser { protected val CAST = Keyword("CAST") protected val COALESCE = Keyword("COALESCE") protected val COUNT = Keyword("COUNT") + protected val DATE = Keyword("DATE") protected val DECIMAL = Keyword("DECIMAL") protected val DESC = Keyword("DESC") protected val DISTINCT = Keyword("DISTINCT") @@ -383,6 +384,7 @@ class SqlParser extends AbstractSparkSQLParser { | DOUBLE ^^^ DoubleType | fixedDecimalType | DECIMAL ^^^ DecimalType.Unlimited + | DATE ^^^ DateType ) protected lazy val fixedDecimalType: Parser[DataType] = diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala index ece5ee73618cb..b1bc858478ee1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala @@ -113,7 +113,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // UDFToString private[this] def castToString(from: DataType): Any => Any = from match { case BinaryType => buildCast[Array[Byte]](_, new String(_, "UTF-8")) - case DateType => buildCast[Date](_, dateToString) + case DateType => buildCast[Int](_, d => DateUtils.toString(d)) case TimestampType => buildCast[Timestamp](_, timestampToString) case _ => buildCast[Any](_, _.toString) } @@ -131,7 +131,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w buildCast[Timestamp](_, t => t.getTime() != 0 || t.getNanos() != 0) case DateType => // Hive would return null when cast from date to boolean - buildCast[Date](_, d => null) + buildCast[Int](_, d => null) case LongType => buildCast[Long](_, _ != 0) case IntegerType => @@ -171,7 +171,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case ByteType => buildCast[Byte](_, b => new Timestamp(b)) case DateType => - buildCast[Date](_, d => new Timestamp(d.getTime)) + buildCast[Int](_, d => new Timestamp(DateUtils.toJavaDate(d).getTime)) // TimestampWritable.decimalToTimestamp case DecimalType() => buildCast[Decimal](_, d => decimalToTimestamp(d)) @@ -224,37 +224,24 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w } } - // Converts Timestamp to string according to Hive TimestampWritable convention - private[this] def timestampToDateString(ts: Timestamp): String = { - Cast.threadLocalDateFormat.get.format(ts) - } - // DateConverter private[this] def castToDate(from: DataType): Any => Any = from match { case StringType => buildCast[String](_, s => - try Date.valueOf(s) catch { case _: java.lang.IllegalArgumentException => null }) + try DateUtils.fromJavaDate(Date.valueOf(s)) + catch { case _: java.lang.IllegalArgumentException => null } + ) case TimestampType => // throw valid precision more than seconds, according to Hive. // Timestamp.nanos is in 0 to 999,999,999, no more than a second. - buildCast[Timestamp](_, t => new Date(Math.floor(t.getTime / 1000.0).toLong * 1000)) + buildCast[Timestamp](_, t => DateUtils.millisToDays(t.getTime)) // Hive throws this exception as a Semantic Exception - // It is never possible to compare result when hive return with exception, so we can return null + // It is never possible to compare result when hive return with exception, + // so we can return null // NULL is more reasonable here, since the query itself obeys the grammar. case _ => _ => null } - // Date cannot be cast to long, according to hive - private[this] def dateToLong(d: Date) = null - - // Date cannot be cast to double, according to hive - private[this] def dateToDouble(d: Date) = null - - // Converts Date to string according to Hive DateWritable convention - private[this] def dateToString(d: Date): String = { - Cast.threadLocalDateFormat.get.format(d) - } - // LongConverter private[this] def castToLong(from: DataType): Any => Any = from match { case StringType => @@ -264,7 +251,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1L else 0L) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t)) case x: NumericType => @@ -280,7 +267,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1 else 0) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toInt) case x: NumericType => @@ -296,7 +283,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toShort else 0.toShort) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toShort) case x: NumericType => @@ -312,7 +299,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toByte else 0.toByte) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toByte) case x: NumericType => @@ -342,7 +329,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => changePrecision(if (b) Decimal(1) else Decimal(0), target)) case DateType => - buildCast[Date](_, d => null) // date can't cast to decimal in Hive + buildCast[Int](_, d => null) // date can't cast to decimal in Hive case TimestampType => // Note that we lose precision here. buildCast[Timestamp](_, t => changePrecision(Decimal(timestampToDouble(t)), target)) @@ -367,7 +354,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1d else 0d) case DateType => - buildCast[Date](_, d => dateToDouble(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t)) case x: NumericType => @@ -383,7 +370,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1f else 0f) case DateType => - buildCast[Date](_, d => dateToDouble(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t).toFloat) case x: NumericType => @@ -442,16 +429,16 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w object Cast { // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd") + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") } } // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") + new SimpleDateFormat("yyyy-MM-dd") } } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala index 4cae5c4718683..1f80d84b744a1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala @@ -246,6 +246,9 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin new String(${eval.primitiveTerm}.asInstanceOf[Array[Byte]]) """.children + case Cast(child @ DateType(), StringType) => + child.castOrNull(c => q"org.apache.spark.sql.types.DateUtils.toString($c)", StringType) + case Cast(child @ NumericType(), IntegerType) => child.castOrNull(c => q"$c.toInt", IntegerType) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala index 5b389aad7a85d..97bb96f48e2c7 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala @@ -35,7 +35,7 @@ object Literal { case d: java.math.BigDecimal => Literal(Decimal(d), DecimalType.Unlimited) case d: Decimal => Literal(d, DecimalType.Unlimited) case t: Timestamp => Literal(t, TimestampType) - case d: Date => Literal(d, DateType) + case d: Date => Literal(DateUtils.fromJavaDate(d), DateType) case a: Array[Byte] => Literal(a, BinaryType) case null => Literal(null, NullType) } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala new file mode 100644 index 0000000000000..8a1a3b81b3d2c --- /dev/null +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala @@ -0,0 +1,60 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.types + +import java.sql.Date +import java.util.{Calendar, TimeZone} + +import org.apache.spark.sql.catalyst.expressions.Cast + +/** + * helper function to convert between Int value of days since 1970-01-01 and java.sql.Date + */ +object DateUtils { + private val MILLIS_PER_DAY = 86400000 + + // Java TimeZone has no mention of thread safety. Use thread local instance to be safe. + private val LOCAL_TIMEZONE = new ThreadLocal[TimeZone] { + override protected def initialValue: TimeZone = { + Calendar.getInstance.getTimeZone + } + } + + private def javaDateToDays(d: Date): Int = { + millisToDays(d.getTime) + } + + def millisToDays(millisLocal: Long): Int = { + ((millisLocal + LOCAL_TIMEZONE.get().getOffset(millisLocal)) / MILLIS_PER_DAY).toInt + } + + private def toMillisSinceEpoch(days: Int): Long = { + val millisUtc = days.toLong * MILLIS_PER_DAY + millisUtc - LOCAL_TIMEZONE.get().getOffset(millisUtc) + } + + def fromJavaDate(date: java.sql.Date): Int = { + javaDateToDays(date) + } + + def toJavaDate(daysSinceEpoch: Int): java.sql.Date = { + new java.sql.Date(toMillisSinceEpoch(daysSinceEpoch)) + } + + def toString(days: Int): String = Cast.threadLocalDateFormat.get.format(toJavaDate(days)) +} diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala index 6ab99aa38877f..8ca0769fac287 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.types -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import scala.math.Numeric.{FloatAsIfIntegral, DoubleAsIfIntegral} import scala.reflect.ClassTag @@ -387,18 +387,16 @@ case object TimestampType extends NativeType { */ @DeveloperApi case object DateType extends NativeType { - private[sql] type JvmType = Date + private[sql] type JvmType = Int @transient private[sql] lazy val tag = ScalaReflectionLock.synchronized { typeTag[JvmType] } - private[sql] val ordering = new Ordering[JvmType] { - def compare(x: Date, y: Date) = x.compareTo(y) - } + private[sql] val ordering = implicitly[Ordering[JvmType]] /** - * The default size of a value of the DateType is 8 bytes. + * The default size of a value of the DateType is 4 bytes. */ - override def defaultSize: Int = 8 + override def defaultSize: Int = 4 } diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala index 37e64adeea853..25d1c105a00a6 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala @@ -303,6 +303,7 @@ class ExpressionEvaluationSuite extends FunSuite { val sd = "1970-01-01" val d = Date.valueOf(sd) + val zts = sd + " 00:00:00" val sts = sd + " 00:00:02" val nts = sts + ".1" val ts = Timestamp.valueOf(nts) @@ -319,14 +320,14 @@ class ExpressionEvaluationSuite extends FunSuite { checkEvaluation(Cast(Literal(1.toDouble) cast TimestampType, DoubleType), 1.toDouble) checkEvaluation(Cast(Literal(sd) cast DateType, StringType), sd) - checkEvaluation(Cast(Literal(d) cast StringType, DateType), d) + checkEvaluation(Cast(Literal(d) cast StringType, DateType), 0) checkEvaluation(Cast(Literal(nts) cast TimestampType, StringType), nts) checkEvaluation(Cast(Literal(ts) cast StringType, TimestampType), ts) // all convert to string type to check checkEvaluation( Cast(Cast(Literal(nts) cast TimestampType, DateType), StringType), sd) checkEvaluation( - Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), sts) + Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), zts) checkEvaluation(Cast("abdef" cast BinaryType, StringType), "abdef") @@ -377,8 +378,8 @@ class ExpressionEvaluationSuite extends FunSuite { } test("date") { - val d1 = Date.valueOf("1970-01-01") - val d2 = Date.valueOf("1970-01-02") + val d1 = DateUtils.fromJavaDate(Date.valueOf("1970-01-01")) + val d2 = DateUtils.fromJavaDate(Date.valueOf("1970-01-02")) checkEvaluation(Literal(d1) < Literal(d2), true) } @@ -459,22 +460,21 @@ class ExpressionEvaluationSuite extends FunSuite { test("date casting") { val d = Date.valueOf("1970-01-01") - checkEvaluation(Cast(d, ShortType), null) - checkEvaluation(Cast(d, IntegerType), null) - checkEvaluation(Cast(d, LongType), null) - checkEvaluation(Cast(d, FloatType), null) - checkEvaluation(Cast(d, DoubleType), null) - checkEvaluation(Cast(d, DecimalType.Unlimited), null) - checkEvaluation(Cast(d, DecimalType(10, 2)), null) - checkEvaluation(Cast(d, StringType), "1970-01-01") - checkEvaluation(Cast(Cast(d, TimestampType), StringType), "1970-01-01 00:00:00") + checkEvaluation(Cast(Literal(d), ShortType), null) + checkEvaluation(Cast(Literal(d), IntegerType), null) + checkEvaluation(Cast(Literal(d), LongType), null) + checkEvaluation(Cast(Literal(d), FloatType), null) + checkEvaluation(Cast(Literal(d), DoubleType), null) + checkEvaluation(Cast(Literal(d), DecimalType.Unlimited), null) + checkEvaluation(Cast(Literal(d), DecimalType(10, 2)), null) + checkEvaluation(Cast(Literal(d), StringType), "1970-01-01") + checkEvaluation(Cast(Cast(Literal(d), TimestampType), StringType), "1970-01-01 00:00:00") } test("timestamp casting") { val millis = 15 * 1000 + 2 val seconds = millis * 1000 + 2 val ts = new Timestamp(millis) - val ts1 = new Timestamp(15 * 1000) // a timestamp without the milliseconds part val tss = new Timestamp(seconds) checkEvaluation(Cast(ts, ShortType), 15) checkEvaluation(Cast(ts, IntegerType), 15) diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala index c147be9f6b1ae..7bcd6687d11a1 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala @@ -106,7 +106,7 @@ class DataTypeSuite extends FunSuite { checkDefaultSize(DoubleType, 8) checkDefaultSize(DecimalType(10, 5), 4096) checkDefaultSize(DecimalType.Unlimited, 4096) - checkDefaultSize(DateType, 8) + checkDefaultSize(DateType, 4) checkDefaultSize(TimestampType, 8) checkDefaultSize(StringType, 4096) checkDefaultSize(BinaryType, 4096) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala index 391b3dae5c8ce..cad0667b46435 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.columnar -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.{AttributeMap, Attribute, AttributeReference} @@ -215,22 +215,7 @@ private[sql] class StringColumnStats extends ColumnStats { def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) } -private[sql] class DateColumnStats extends ColumnStats { - protected var upper: Date = null - protected var lower: Date = null - - override def gatherStats(row: Row, ordinal: Int) { - super.gatherStats(row, ordinal) - if (!row.isNullAt(ordinal)) { - val value = row(ordinal).asInstanceOf[Date] - if (upper == null || value.compareTo(upper) > 0) upper = value - if (lower == null || value.compareTo(lower) < 0) lower = value - sizeInBytes += DATE.defaultSize - } - } - - def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) -} +private[sql] class DateColumnStats extends IntColumnStats private[sql] class TimestampColumnStats extends ColumnStats { protected var upper: Timestamp = null diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala index fcf2faa0914c0..db5bc0de363c7 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala @@ -335,21 +335,20 @@ private[sql] object STRING extends NativeColumnType(StringType, 7, 8) { } } -private[sql] object DATE extends NativeColumnType(DateType, 8, 8) { +private[sql] object DATE extends NativeColumnType(DateType, 8, 4) { override def extract(buffer: ByteBuffer) = { - val date = new Date(buffer.getLong()) - date + buffer.getInt } - override def append(v: Date, buffer: ByteBuffer): Unit = { - buffer.putLong(v.getTime) + override def append(v: Int, buffer: ByteBuffer): Unit = { + buffer.putInt(v) } override def getField(row: Row, ordinal: Int) = { - row(ordinal).asInstanceOf[Date] + row(ordinal).asInstanceOf[Int] } - override def setField(row: MutableRow, ordinal: Int, value: Date): Unit = { + def setField(row: MutableRow, ordinal: Int, value: Int): Unit = { row(ordinal) = value } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala index b85021acc9d4c..3a2f8d75dac5e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala @@ -135,6 +135,8 @@ object EvaluatePython { case (ud, udt: UserDefinedType[_]) => toJava(udt.serialize(ud), udt.sqlType) + case (date: Int, DateType) => DateUtils.toJavaDate(date) + // Pyrolite can handle Timestamp and Decimal case (other, _) => other } @@ -171,7 +173,7 @@ object EvaluatePython { }): Row case (c: java.util.Calendar, DateType) => - new java.sql.Date(c.getTime().getTime()) + DateUtils.fromJavaDate(new java.sql.Date(c.getTime().getTime())) case (c: java.util.Calendar, TimestampType) => new java.sql.Timestamp(c.getTime().getTime()) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala index 9171939f7e8f7..33ce71b51b213 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala @@ -377,10 +377,12 @@ private[sql] object JsonRDD extends Logging { } } - private def toDate(value: Any): Date = { + private def toDate(value: Any): Int = { value match { // only support string as date - case value: java.lang.String => new Date(DataTypeConversions.stringToTime(value).getTime) + case value: java.lang.String => + DateUtils.millisToDays(DataTypeConversions.stringToTime(value).getTime) + case value: java.sql.Date => DateUtils.fromJavaDate(value) } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index d82c34316cefa..a7f6a50a04fbd 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -296,6 +296,13 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { mapData.collect().take(1).map(Row.fromTuple).toSeq) } + test("date row") { + checkAnswer(sql( + """select cast("2015-01-28" as date) from testData limit 1"""), + Row(java.sql.Date.valueOf("2015-01-28")) + ) + } + test("from follow multiple brackets") { checkAnswer(sql( "select key from ((select * from testData limit 1) union all (select * from testData limit 1)) x limit 1"), diff --git a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala index a015884bae282..f26fcc0385b68 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala @@ -83,7 +83,8 @@ class ScalaReflectionRelationSuite extends FunSuite { assert(sql("SELECT * FROM reflectData").collect().head === Row("a", 1, 1L, 1.toFloat, 1.toDouble, 1.toShort, 1.toByte, true, - new java.math.BigDecimal(1), new Date(12345), new Timestamp(12345), Seq(1,2,3))) + new java.math.BigDecimal(1), new Date(70, 0, 1), // This is 1970-01-01 + new Timestamp(12345), Seq(1,2,3))) } test("query case class RDD with nulls") { diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala index be2b34de077c9..581fccf8ee613 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala @@ -30,7 +30,7 @@ class ColumnStatsSuite extends FunSuite { testColumnStats(classOf[FloatColumnStats], FLOAT, Row(Float.MaxValue, Float.MinValue, 0)) testColumnStats(classOf[DoubleColumnStats], DOUBLE, Row(Double.MaxValue, Double.MinValue, 0)) testColumnStats(classOf[StringColumnStats], STRING, Row(null, null, 0)) - testColumnStats(classOf[DateColumnStats], DATE, Row(null, null, 0)) + testColumnStats(classOf[DateColumnStats], DATE, Row(Int.MaxValue, Int.MinValue, 0)) testColumnStats(classOf[TimestampColumnStats], TIMESTAMP, Row(null, null, 0)) def testColumnStats[T <: NativeType, U <: ColumnStats]( diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala index 87e608a8853dc..9ce845912f1c7 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.columnar import java.nio.ByteBuffer -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.scalatest.FunSuite @@ -34,7 +34,7 @@ class ColumnTypeSuite extends FunSuite with Logging { test("defaultSize") { val checks = Map( INT -> 4, SHORT -> 2, LONG -> 8, BYTE -> 1, DOUBLE -> 8, FLOAT -> 4, BOOLEAN -> 1, - STRING -> 8, DATE -> 8, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) + STRING -> 8, DATE -> 4, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) checks.foreach { case (columnType, expectedSize) => assertResult(expectedSize, s"Wrong defaultSize for $columnType") { @@ -64,7 +64,7 @@ class ColumnTypeSuite extends FunSuite with Logging { checkActualSize(FLOAT, Float.MaxValue, 4) checkActualSize(BOOLEAN, true, 1) checkActualSize(STRING, "hello", 4 + "hello".getBytes("utf-8").length) - checkActualSize(DATE, new Date(0L), 8) + checkActualSize(DATE, 0, 4) checkActualSize(TIMESTAMP, new Timestamp(0L), 12) val binary = Array.fill[Byte](4)(0: Byte) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala index f941465fa3e35..60ed28cc97bf1 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala @@ -17,11 +17,11 @@ package org.apache.spark.sql.columnar +import java.sql.Timestamp + import scala.collection.immutable.HashSet import scala.util.Random -import java.sql.{Date, Timestamp} - import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.GenericMutableRow import org.apache.spark.sql.types.{DataType, NativeType} @@ -50,7 +50,7 @@ object ColumnarTestUtils { case STRING => Random.nextString(Random.nextInt(32)) case BOOLEAN => Random.nextBoolean() case BINARY => randomBytes(Random.nextInt(32)) - case DATE => new Date(Random.nextLong()) + case DATE => Random.nextInt() case TIMESTAMP => val timestamp = new Timestamp(Random.nextLong()) timestamp.setNanos(Random.nextInt(999999999)) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala index cb615388da0c7..1396c6b7246d1 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala @@ -67,14 +67,15 @@ class JsonSuite extends QueryTest { checkTypePromotion(Timestamp.valueOf(strTime), enforceCorrectType(strTime, TimestampType)) val strDate = "2014-10-15" - checkTypePromotion(Date.valueOf(strDate), enforceCorrectType(strDate, DateType)) + checkTypePromotion( + DateUtils.fromJavaDate(Date.valueOf(strDate)), enforceCorrectType(strDate, DateType)) val ISO8601Time1 = "1970-01-01T01:00:01.0Z" checkTypePromotion(new Timestamp(3601000), enforceCorrectType(ISO8601Time1, TimestampType)) - checkTypePromotion(new Date(3601000), enforceCorrectType(ISO8601Time1, DateType)) + checkTypePromotion(DateUtils.millisToDays(3601000), enforceCorrectType(ISO8601Time1, DateType)) val ISO8601Time2 = "1970-01-01T02:00:01-01:00" checkTypePromotion(new Timestamp(10801000), enforceCorrectType(ISO8601Time2, TimestampType)) - checkTypePromotion(new Date(10801000), enforceCorrectType(ISO8601Time2, DateType)) + checkTypePromotion(DateUtils.millisToDays(10801000), enforceCorrectType(ISO8601Time2, DateType)) } test("Get compatible type") { diff --git a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala index 0d934620aca09..a6266f611c219 100644 --- a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala +++ b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala @@ -357,6 +357,7 @@ class HiveCompatibilitySuite extends HiveQueryFileTest with BeforeAndAfter { "database_drop", "database_location", "database_properties", + "date_1", "date_2", "date_3", "date_4", diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index b746942cb1067..724bd28d4b608 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.hive import java.io.{BufferedReader, InputStreamReader, PrintStream} -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import scala.collection.JavaConversions._ import scala.language.implicitConversions @@ -409,7 +409,7 @@ private object HiveContext { toHiveStructString((key, kType)) + ":" + toHiveStructString((value, vType)) }.toSeq.sorted.mkString("{", ",", "}") case (null, _) => "NULL" - case (d: Date, DateType) => new DateWritable(d).toString + case (d: Int, DateType) => new DateWritable(d).toString case (t: Timestamp, TimestampType) => new TimestampWritable(t).toString case (bin: Array[Byte], BinaryType) => new String(bin, "UTF-8") case (decimal: java.math.BigDecimal, DecimalType()) => diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala index 82dba99900df9..4afa2e71d77cc 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala @@ -267,7 +267,8 @@ private[hive] trait HiveInspectors { val temp = new Array[Byte](writable.getLength) System.arraycopy(writable.getBytes, 0, temp, 0, temp.length) temp - case poi: WritableConstantDateObjectInspector => poi.getWritableConstantValue.get() + case poi: WritableConstantDateObjectInspector => + DateUtils.fromJavaDate(poi.getWritableConstantValue.get()) case mi: StandardConstantMapObjectInspector => // take the value from the map inspector object, rather than the input data mi.getWritableConstantValue.map { case (k, v) => @@ -304,7 +305,8 @@ private[hive] trait HiveInspectors { System.arraycopy(bw.getBytes(), 0, result, 0, bw.getLength()) result case x: DateObjectInspector if x.preferWritable() => - x.getPrimitiveWritableObject(data).get() + DateUtils.fromJavaDate(x.getPrimitiveWritableObject(data).get()) + case x: DateObjectInspector => DateUtils.fromJavaDate(x.getPrimitiveJavaObject(data)) // org.apache.hadoop.hive.serde2.io.TimestampWritable.set will reset current time object // if next timestamp is null, so Timestamp object is cloned case x: TimestampObjectInspector if x.preferWritable() => @@ -343,6 +345,9 @@ private[hive] trait HiveInspectors { case _: JavaHiveDecimalObjectInspector => (o: Any) => HiveShim.createDecimal(o.asInstanceOf[Decimal].toJavaBigDecimal) + case _: JavaDateObjectInspector => + (o: Any) => DateUtils.toJavaDate(o.asInstanceOf[Int]) + case soi: StandardStructObjectInspector => val wrappers = soi.getAllStructFieldRefs.map(ref => wrapperFor(ref.getFieldObjectInspector)) (o: Any) => { @@ -426,7 +431,7 @@ private[hive] trait HiveInspectors { case _: BinaryObjectInspector if x.preferWritable() => HiveShim.getBinaryWritable(a) case _: BinaryObjectInspector => a.asInstanceOf[Array[Byte]] case _: DateObjectInspector if x.preferWritable() => HiveShim.getDateWritable(a) - case _: DateObjectInspector => a.asInstanceOf[java.sql.Date] + case _: DateObjectInspector => DateUtils.toJavaDate(a.asInstanceOf[Int]) case _: TimestampObjectInspector if x.preferWritable() => HiveShim.getTimestampWritable(a) case _: TimestampObjectInspector => a.asInstanceOf[java.sql.Timestamp] } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala index c368715f7c6f5..effaa5a443512 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala @@ -34,6 +34,7 @@ import org.apache.spark.SerializableWritable import org.apache.spark.broadcast.Broadcast import org.apache.spark.rdd.{EmptyRDD, HadoopRDD, RDD, UnionRDD} import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.types.DateUtils /** * A trait for subclasses that handle table scans. @@ -306,7 +307,7 @@ private[hive] object HadoopTableReader extends HiveInspectors { row.update(ordinal, oi.getPrimitiveJavaObject(value).clone()) case oi: DateObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => - row.update(ordinal, oi.getPrimitiveJavaObject(value)) + row.update(ordinal, DateUtils.fromJavaDate(oi.getPrimitiveJavaObject(value))) case oi: BinaryObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => row.update(ordinal, oi.getPrimitiveJavaObject(value)) diff --git a/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d b/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d new file mode 100644 index 0000000000000..98da82fa89386 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d @@ -0,0 +1 @@ +1970-01-01 1970-01-01 1969-12-31 16:00:00 1969-12-31 16:00:00 1970-01-01 00:00:00 diff --git a/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e b/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e new file mode 100644 index 0000000000000..27ba77ddaf615 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e @@ -0,0 +1 @@ +true diff --git a/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 b/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 new file mode 100644 index 0000000000000..27ba77ddaf615 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 @@ -0,0 +1 @@ +true diff --git a/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada b/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada new file mode 100644 index 0000000000000..573541ac9702d --- /dev/null +++ b/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada @@ -0,0 +1 @@ +0 diff --git a/sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 b/sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 rename to sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 diff --git a/sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 b/sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 rename to sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 diff --git a/sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea b/sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea rename to sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea diff --git a/sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b b/sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b rename to sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b diff --git a/sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b b/sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b rename to sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b diff --git a/sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b b/sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b rename to sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b diff --git a/sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a b/sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a rename to sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 diff --git a/sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d b/sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d rename to sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 diff --git a/sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d b/sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d rename to sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala index 2d3ff680125ad..09bbd5c867e4e 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala @@ -18,7 +18,6 @@ package org.apache.spark.sql.hive import java.util -import java.sql.Date import java.util.{Locale, TimeZone} import org.apache.hadoop.hive.ql.udf.UDAFPercentile @@ -76,7 +75,7 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { Literal(0.asInstanceOf[Float]) :: Literal(0.asInstanceOf[Double]) :: Literal("0") :: - Literal(new Date(2014, 9, 23)) :: + Literal(new java.sql.Date(114, 8, 23)) :: Literal(Decimal(BigDecimal(123.123))) :: Literal(new java.sql.Timestamp(123123)) :: Literal(Array[Byte](1,2,3)) :: @@ -143,7 +142,6 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { case (r1: Array[Byte], r2: Array[Byte]) if r1 != null && r2 != null && r1.length == r2.length => r1.zip(r2).map { case (b1, b2) => assert(b1 === b2) } - case (r1: Date, r2: Date) => assert(r1.compareTo(r2) === 0) case (r1, r2) => assert(r1 === r2) } } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 4c53b10ba96e9..4f67d1def65fc 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -253,8 +253,30 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { createQueryTest("Cast Timestamp to Timestamp in UDF", """ - | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) - | FROM src LIMIT 1 + | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) + | FROM src LIMIT 1 + """.stripMargin) + + createQueryTest("Date comparison test 1", + """ + | SELECT + | CAST(CAST('1970-01-01 22:00:00' AS timestamp) AS date) == + | CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) + | FROM src LIMIT 1 + """.stripMargin) + + createQueryTest("Date comparison test 2", + "SELECT CAST(CAST(0 AS timestamp) AS date) > CAST(0 AS timestamp) FROM src LIMIT 1") + + createQueryTest("Date cast", + """ + | SELECT + | CAST(CAST(0 AS timestamp) AS date), + | CAST(CAST(CAST(0 AS timestamp) AS date) AS string), + | CAST(0 AS timestamp), + | CAST(CAST(0 AS timestamp) AS string), + | CAST(CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) AS timestamp) + | FROM src LIMIT 1 """.stripMargin) createQueryTest("Simple Average", diff --git a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala index 254919e8f6fdc..b5a0754ff61f9 100644 --- a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala +++ b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala @@ -160,7 +160,7 @@ private[hive] object HiveShim { if (value == null) null else new hadoopIo.BytesWritable(value.asInstanceOf[Array[Byte]]) def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { diff --git a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala index 45ca59ae56a38..e4c1809c8bb21 100644 --- a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala +++ b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala @@ -263,7 +263,7 @@ private[hive] object HiveShim { } def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { From 46d50f151c02c6892fc84a37fdf2a521dc774d1c Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Mon, 2 Feb 2015 15:55:44 -0800 Subject: [PATCH 25/28] [SPARK-5513][MLLIB] Add nonnegative option to ml's ALS This PR ports the NNLS solver to the new ALS implementation. CC: coderxiang Author: Xiangrui Meng Closes #4302 from mengxr/SPARK-5513 and squashes the following commits: 4cbdab0 [Xiangrui Meng] fix serialization 88de634 [Xiangrui Meng] add NNLS to ml's ALS --- .../apache/spark/ml/recommendation/ALS.scala | 95 ++++++++++++++++--- .../spark/mllib/optimization/NNLS.scala | 4 +- .../spark/ml/recommendation/ALSSuite.scala | 11 +++ 3 files changed, 96 insertions(+), 14 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala index 979a19d3b2057..82d21d5e4cb6e 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala @@ -25,12 +25,14 @@ import scala.util.Sorting import com.github.fommil.netlib.BLAS.{getInstance => blas} import com.github.fommil.netlib.LAPACK.{getInstance => lapack} +import org.jblas.DoubleMatrix import org.netlib.util.intW import org.apache.spark.{HashPartitioner, Logging, Partitioner} import org.apache.spark.annotation.DeveloperApi import org.apache.spark.ml.{Estimator, Model} import org.apache.spark.ml.param._ +import org.apache.spark.mllib.optimization.NNLS import org.apache.spark.rdd.RDD import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Dsl._ @@ -80,6 +82,10 @@ private[recommendation] trait ALSParams extends Params with HasMaxIter with HasR val ratingCol = new Param[String](this, "ratingCol", "column name for ratings", Some("rating")) def getRatingCol: String = get(ratingCol) + val nonnegative = new BooleanParam( + this, "nonnegative", "whether to use nonnegative constraint for least squares", Some(false)) + val getNonnegative: Boolean = get(nonnegative) + /** * Validates and transforms the input schema. * @param schema input schema @@ -186,6 +192,7 @@ class ALS extends Estimator[ALSModel] with ALSParams { def setPredictionCol(value: String): this.type = set(predictionCol, value) def setMaxIter(value: Int): this.type = set(maxIter, value) def setRegParam(value: Double): this.type = set(regParam, value) + def setNonnegative(value: Boolean): this.type = set(nonnegative, value) /** Sets both numUserBlocks and numItemBlocks to the specific value. */ def setNumBlocks(value: Int): this.type = { @@ -207,7 +214,7 @@ class ALS extends Estimator[ALSModel] with ALSParams { val (userFactors, itemFactors) = ALS.train(ratings, rank = map(rank), numUserBlocks = map(numUserBlocks), numItemBlocks = map(numItemBlocks), maxIter = map(maxIter), regParam = map(regParam), implicitPrefs = map(implicitPrefs), - alpha = map(alpha)) + alpha = map(alpha), nonnegative = map(nonnegative)) val model = new ALSModel(this, map, map(rank), userFactors, itemFactors) Params.inheritValues(map, this, model) model @@ -232,11 +239,16 @@ object ALS extends Logging { /** Rating class for better code readability. */ case class Rating[@specialized(Int, Long) ID](user: ID, item: ID, rating: Float) + /** Trait for least squares solvers applied to the normal equation. */ + private[recommendation] trait LeastSquaresNESolver extends Serializable { + /** Solves a least squares problem (possibly with other constraints). */ + def solve(ne: NormalEquation, lambda: Double): Array[Float] + } + /** Cholesky solver for least square problems. */ - private[recommendation] class CholeskySolver { + private[recommendation] class CholeskySolver extends LeastSquaresNESolver { private val upper = "U" - private val info = new intW(0) /** * Solves a least squares problem with L2 regularization: @@ -247,7 +259,7 @@ object ALS extends Logging { * @param lambda regularization constant, which will be scaled by n * @return the solution x */ - def solve(ne: NormalEquation, lambda: Double): Array[Float] = { + override def solve(ne: NormalEquation, lambda: Double): Array[Float] = { val k = ne.k // Add scaled lambda to the diagonals of AtA. val scaledlambda = lambda * ne.n @@ -258,6 +270,7 @@ object ALS extends Logging { i += j j += 1 } + val info = new intW(0) lapack.dppsv(upper, k, 1, ne.ata, ne.atb, k, info) val code = info.`val` assert(code == 0, s"lapack.dppsv returned $code.") @@ -272,6 +285,63 @@ object ALS extends Logging { } } + /** NNLS solver. */ + private[recommendation] class NNLSSolver extends LeastSquaresNESolver { + private var rank: Int = -1 + private var workspace: NNLS.Workspace = _ + private var ata: DoubleMatrix = _ + private var initialized: Boolean = false + + private def initialize(rank: Int): Unit = { + if (!initialized) { + this.rank = rank + workspace = NNLS.createWorkspace(rank) + ata = new DoubleMatrix(rank, rank) + initialized = true + } else { + require(this.rank == rank) + } + } + + /** + * Solves a nonnegative least squares problem with L2 regularizatin: + * + * min_x_ norm(A x - b)^2^ + lambda * n * norm(x)^2^ + * subject to x >= 0 + */ + override def solve(ne: NormalEquation, lambda: Double): Array[Float] = { + val rank = ne.k + initialize(rank) + fillAtA(ne.ata, lambda * ne.n) + val x = NNLS.solve(ata, new DoubleMatrix(rank, 1, ne.atb: _*), workspace) + ne.reset() + x.map(x => x.toFloat) + } + + /** + * Given a triangular matrix in the order of fillXtX above, compute the full symmetric square + * matrix that it represents, storing it into destMatrix. + */ + private def fillAtA(triAtA: Array[Double], lambda: Double) { + var i = 0 + var pos = 0 + var a = 0.0 + val data = ata.data + while (i < rank) { + var j = 0 + while (j <= i) { + a = triAtA(pos) + data(i * rank + j) = a + data(j * rank + i) = a + pos += 1 + j += 1 + } + data(i * rank + i) += lambda + i += 1 + } + } + } + /** Representing a normal equation (ALS' subproblem). */ private[recommendation] class NormalEquation(val k: Int) extends Serializable { @@ -350,12 +420,14 @@ object ALS extends Logging { maxIter: Int = 10, regParam: Double = 1.0, implicitPrefs: Boolean = false, - alpha: Double = 1.0)( + alpha: Double = 1.0, + nonnegative: Boolean = false)( implicit ord: Ordering[ID]): (RDD[(ID, Array[Float])], RDD[(ID, Array[Float])]) = { val userPart = new HashPartitioner(numUserBlocks) val itemPart = new HashPartitioner(numItemBlocks) val userLocalIndexEncoder = new LocalIndexEncoder(userPart.numPartitions) val itemLocalIndexEncoder = new LocalIndexEncoder(itemPart.numPartitions) + val solver = if (nonnegative) new NNLSSolver else new CholeskySolver val blockRatings = partitionRatings(ratings, userPart, itemPart).cache() val (userInBlocks, userOutBlocks) = makeBlocks("user", blockRatings, userPart, itemPart) // materialize blockRatings and user blocks @@ -374,20 +446,20 @@ object ALS extends Logging { userFactors.setName(s"userFactors-$iter").persist() val previousItemFactors = itemFactors itemFactors = computeFactors(userFactors, userOutBlocks, itemInBlocks, rank, regParam, - userLocalIndexEncoder, implicitPrefs, alpha) + userLocalIndexEncoder, implicitPrefs, alpha, solver) previousItemFactors.unpersist() itemFactors.setName(s"itemFactors-$iter").persist() val previousUserFactors = userFactors userFactors = computeFactors(itemFactors, itemOutBlocks, userInBlocks, rank, regParam, - itemLocalIndexEncoder, implicitPrefs, alpha) + itemLocalIndexEncoder, implicitPrefs, alpha, solver) previousUserFactors.unpersist() } } else { for (iter <- 0 until maxIter) { itemFactors = computeFactors(userFactors, userOutBlocks, itemInBlocks, rank, regParam, - userLocalIndexEncoder) + userLocalIndexEncoder, solver = solver) userFactors = computeFactors(itemFactors, itemOutBlocks, userInBlocks, rank, regParam, - itemLocalIndexEncoder) + itemLocalIndexEncoder, solver = solver) } } val userIdAndFactors = userInBlocks @@ -879,6 +951,7 @@ object ALS extends Logging { * @param srcEncoder encoder for src local indices * @param implicitPrefs whether to use implicit preference * @param alpha the alpha constant in the implicit preference formulation + * @param solver solver for least squares problems * * @return dst factors */ @@ -890,7 +963,8 @@ object ALS extends Logging { regParam: Double, srcEncoder: LocalIndexEncoder, implicitPrefs: Boolean = false, - alpha: Double = 1.0): RDD[(Int, FactorBlock)] = { + alpha: Double = 1.0, + solver: LeastSquaresNESolver): RDD[(Int, FactorBlock)] = { val numSrcBlocks = srcFactorBlocks.partitions.length val YtY = if (implicitPrefs) Some(computeYtY(srcFactorBlocks, rank)) else None val srcOut = srcOutBlocks.join(srcFactorBlocks).flatMap { @@ -909,7 +983,6 @@ object ALS extends Logging { val dstFactors = new Array[Array[Float]](dstIds.length) var j = 0 val ls = new NormalEquation(rank) - val solver = new CholeskySolver // TODO: add NNLS solver while (j < dstIds.length) { ls.reset() if (implicitPrefs) { diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala index fef062e02b6ec..ccd93b318bc23 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala @@ -19,13 +19,11 @@ package org.apache.spark.mllib.optimization import org.jblas.{DoubleMatrix, SimpleBlas} -import org.apache.spark.annotation.DeveloperApi - /** * Object used to solve nonnegative least squares problems using a modified * projected gradient method. */ -private[mllib] object NNLS { +private[spark] object NNLS { class Workspace(val n: Int) { val scratch = new DoubleMatrix(n, 1) val grad = new DoubleMatrix(n, 1) diff --git a/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala index 07aff56fb7d2f..ee08c3c32760e 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala @@ -444,4 +444,15 @@ class ALSSuite extends FunSuite with MLlibTestSparkContext with Logging { val (strUserFactors, _) = ALS.train(strRatings, rank = 2, maxIter = 4) assert(strUserFactors.first()._1.getClass === classOf[String]) } + + test("nonnegative constraint") { + val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) + val (userFactors, itemFactors) = ALS.train(ratings, rank = 2, maxIter = 4, nonnegative = true) + def isNonnegative(factors: RDD[(Int, Array[Float])]): Boolean = { + factors.values.map { _.forall(_ >= 0.0) }.reduce(_ && _) + } + assert(isNonnegative(userFactors)) + assert(isNonnegative(itemFactors)) + // TODO: Validate the solution. + } } From b1aa8fe988301b924048039529234278aeb0298a Mon Sep 17 00:00:00 2001 From: DB Tsai Date: Mon, 2 Feb 2015 15:59:15 -0800 Subject: [PATCH 26/28] [SPARK-2309][MLlib] Multinomial Logistic Regression #1379 is automatically closed by asfgit, and github can not reopen it once it's closed, so this will be the new PR. Binary Logistic Regression can be extended to Multinomial Logistic Regression by running K-1 independent Binary Logistic Regression models. The following formula is implemented. http://www.slideshare.net/dbtsai/2014-0620-mlor-36132297/25 Author: DB Tsai Closes #3833 from dbtsai/mlor and squashes the following commits: 4e2f354 [DB Tsai] triger jenkins 697b7c9 [DB Tsai] address some feedback 4ce4d33 [DB Tsai] refactoring ff843b3 [DB Tsai] rebase f114135 [DB Tsai] refactoring 4348426 [DB Tsai] Addressed feedback from Sean Owen a252197 [DB Tsai] first commit --- .../classification/LogisticRegression.scala | 128 +++++++++-- .../spark/mllib/optimization/Gradient.scala | 200 +++++++++++++++--- .../GeneralizedLinearAlgorithm.scala | 101 +++++++-- .../spark/mllib/util/DataValidators.scala | 18 +- .../LogisticRegressionSuite.scala | 179 +++++++++++++++- 5 files changed, 565 insertions(+), 61 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala index 94d757bc317ab..282fb3ff283f4 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala @@ -18,30 +18,41 @@ package org.apache.spark.mllib.classification import org.apache.spark.annotation.Experimental -import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.mllib.linalg.BLAS.dot +import org.apache.spark.mllib.linalg.{DenseVector, Vector} import org.apache.spark.mllib.optimization._ import org.apache.spark.mllib.regression._ -import org.apache.spark.mllib.util.DataValidators +import org.apache.spark.mllib.util.{DataValidators, MLUtils} import org.apache.spark.rdd.RDD /** - * Classification model trained using Logistic Regression. + * Classification model trained using Multinomial/Binary Logistic Regression. * * @param weights Weights computed for every feature. - * @param intercept Intercept computed for this model. + * @param intercept Intercept computed for this model. (Only used in Binary Logistic Regression. + * In Multinomial Logistic Regression, the intercepts will not be a single values, + * so the intercepts will be part of the weights.) + * @param numFeatures the dimension of the features. + * @param numClasses the number of possible outcomes for k classes classification problem in + * Multinomial Logistic Regression. By default, it is binary logistic regression + * so numClasses will be set to 2. */ class LogisticRegressionModel ( override val weights: Vector, - override val intercept: Double) + override val intercept: Double, + val numFeatures: Int, + val numClasses: Int) extends GeneralizedLinearModel(weights, intercept) with ClassificationModel with Serializable { + def this(weights: Vector, intercept: Double) = this(weights, intercept, weights.size, 2) + private var threshold: Option[Double] = Some(0.5) /** * :: Experimental :: - * Sets the threshold that separates positive predictions from negative predictions. An example - * with prediction score greater than or equal to this threshold is identified as an positive, - * and negative otherwise. The default value is 0.5. + * Sets the threshold that separates positive predictions from negative predictions + * in Binary Logistic Regression. An example with prediction score greater than or equal to + * this threshold is identified as an positive, and negative otherwise. The default value is 0.5. */ @Experimental def setThreshold(threshold: Double): this.type = { @@ -61,20 +72,68 @@ class LogisticRegressionModel ( override protected def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double) = { - val margin = weightMatrix.toBreeze.dot(dataMatrix.toBreeze) + intercept - val score = 1.0 / (1.0 + math.exp(-margin)) - threshold match { - case Some(t) => if (score > t) 1.0 else 0.0 - case None => score + require(dataMatrix.size == numFeatures) + + // If dataMatrix and weightMatrix have the same dimension, it's binary logistic regression. + if (numClasses == 2) { + require(numFeatures == weightMatrix.size) + val margin = dot(weights, dataMatrix) + intercept + val score = 1.0 / (1.0 + math.exp(-margin)) + threshold match { + case Some(t) => if (score > t) 1.0 else 0.0 + case None => score + } + } else { + val dataWithBiasSize = weightMatrix.size / (numClasses - 1) + + val weightsArray = weights match { + case dv: DenseVector => dv.values + case _ => + throw new IllegalArgumentException( + s"weights only supports dense vector but got type ${weights.getClass}.") + } + + val margins = (0 until numClasses - 1).map { i => + var margin = 0.0 + dataMatrix.foreachActive { (index, value) => + if (value != 0.0) margin += value * weightsArray((i * dataWithBiasSize) + index) + } + // Intercept is required to be added into margin. + if (dataMatrix.size + 1 == dataWithBiasSize) { + margin += weightsArray((i * dataWithBiasSize) + dataMatrix.size) + } + margin + } + + /** + * Find the one with maximum margins. If the maxMargin is negative, then the prediction + * result will be the first class. + * + * PS, if you want to compute the probabilities for each outcome instead of the outcome + * with maximum probability, remember to subtract the maxMargin from margins if maxMargin + * is positive to prevent overflow. + */ + var bestClass = 0 + var maxMargin = 0.0 + var i = 0 + while(i < margins.size) { + if (margins(i) > maxMargin) { + maxMargin = margins(i) + bestClass = i + 1 + } + i += 1 + } + bestClass.toDouble } } } /** - * Train a classification model for Logistic Regression using Stochastic Gradient Descent. By - * default L2 regularization is used, which can be changed via - * [[LogisticRegressionWithSGD.optimizer]]. - * NOTE: Labels used in Logistic Regression should be {0, 1}. + * Train a classification model for Binary Logistic Regression + * using Stochastic Gradient Descent. By default L2 regularization is used, + * which can be changed via [[LogisticRegressionWithSGD.optimizer]]. + * NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1} + * for k classes multi-label classification problem. * Using [[LogisticRegressionWithLBFGS]] is recommended over this. */ class LogisticRegressionWithSGD private ( @@ -194,9 +253,10 @@ object LogisticRegressionWithSGD { } /** - * Train a classification model for Logistic Regression using Limited-memory BFGS. - * Standard feature scaling and L2 regularization are used by default. - * NOTE: Labels used in Logistic Regression should be {0, 1} + * Train a classification model for Multinomial/Binary Logistic Regression using + * Limited-memory BFGS. Standard feature scaling and L2 regularization are used by default. + * NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1} + * for k classes multi-label classification problem. */ class LogisticRegressionWithLBFGS extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable { @@ -205,9 +265,33 @@ class LogisticRegressionWithLBFGS override val optimizer = new LBFGS(new LogisticGradient, new SquaredL2Updater) - override protected val validators = List(DataValidators.binaryLabelValidator) + override protected val validators = List(multiLabelValidator) + + private def multiLabelValidator: RDD[LabeledPoint] => Boolean = { data => + if (numOfLinearPredictor > 1) { + DataValidators.multiLabelValidator(numOfLinearPredictor + 1)(data) + } else { + DataValidators.binaryLabelValidator(data) + } + } + + /** + * :: Experimental :: + * Set the number of possible outcomes for k classes classification problem in + * Multinomial Logistic Regression. + * By default, it is binary logistic regression so k will be set to 2. + */ + @Experimental + def setNumClasses(numClasses: Int): this.type = { + require(numClasses > 1) + numOfLinearPredictor = numClasses - 1 + if (numClasses > 2) { + optimizer.setGradient(new LogisticGradient(numClasses)) + } + this + } override protected def createModel(weights: Vector, intercept: Double) = { - new LogisticRegressionModel(weights, intercept) + new LogisticRegressionModel(weights, intercept, numFeatures, numOfLinearPredictor + 1) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala index 1ca0f36c6ac34..0acdab797e8f3 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala @@ -18,7 +18,7 @@ package org.apache.spark.mllib.optimization import org.apache.spark.annotation.DeveloperApi -import org.apache.spark.mllib.linalg.{Vector, Vectors} +import org.apache.spark.mllib.linalg.{DenseVector, Vector, Vectors} import org.apache.spark.mllib.linalg.BLAS.{axpy, dot, scal} import org.apache.spark.mllib.util.MLUtils @@ -55,24 +55,86 @@ abstract class Gradient extends Serializable { /** * :: DeveloperApi :: - * Compute gradient and loss for a logistic loss function, as used in binary classification. - * See also the documentation for the precise formulation. + * Compute gradient and loss for a multinomial logistic loss function, as used + * in multi-class classification (it is also used in binary logistic regression). + * + * In `The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition` + * by Trevor Hastie, Robert Tibshirani, and Jerome Friedman, which can be downloaded from + * http://statweb.stanford.edu/~tibs/ElemStatLearn/ , Eq. (4.17) on page 119 gives the formula of + * multinomial logistic regression model. A simple calculation shows that + * + * P(y=0|x, w) = 1 / (1 + \sum_i^{K-1} \exp(x w_i)) + * P(y=1|x, w) = exp(x w_1) / (1 + \sum_i^{K-1} \exp(x w_i)) + * ... + * P(y=K-1|x, w) = exp(x w_{K-1}) / (1 + \sum_i^{K-1} \exp(x w_i)) + * + * for K classes multiclass classification problem. + * + * The model weights w = (w_1, w_2, ..., w_{K-1})^T becomes a matrix which has dimension of + * (K-1) * (N+1) if the intercepts are added. If the intercepts are not added, the dimension + * will be (K-1) * N. + * + * As a result, the loss of objective function for a single instance of data can be written as + * l(w, x) = -log P(y|x, w) = -\alpha(y) log P(y=0|x, w) - (1-\alpha(y)) log P(y|x, w) + * = log(1 + \sum_i^{K-1}\exp(x w_i)) - (1-\alpha(y)) x w_{y-1} + * = log(1 + \sum_i^{K-1}\exp(margins_i)) - (1-\alpha(y)) margins_{y-1} + * + * where \alpha(i) = 1 if i != 0, and + * \alpha(i) = 0 if i == 0, + * margins_i = x w_i. + * + * For optimization, we have to calculate the first derivative of the loss function, and + * a simple calculation shows that + * + * \frac{\partial l(w, x)}{\partial w_{ij}} + * = (\exp(x w_i) / (1 + \sum_k^{K-1} \exp(x w_k)) - (1-\alpha(y)\delta_{y, i+1})) * x_j + * = multiplier_i * x_j + * + * where \delta_{i, j} = 1 if i == j, + * \delta_{i, j} = 0 if i != j, and + * multiplier + * = \exp(margins_i) / (1 + \sum_k^{K-1} \exp(margins_i)) - (1-\alpha(y)\delta_{y, i+1}) + * + * If any of margins is larger than 709.78, the numerical computation of multiplier and loss + * function will be suffered from arithmetic overflow. This issue occurs when there are outliers + * in data which are far away from hyperplane, and this will cause the failing of training once + * infinity / infinity is introduced. Note that this is only a concern when max(margins) > 0. + * + * Fortunately, when max(margins) = maxMargin > 0, the loss function and the multiplier can be + * easily rewritten into the following equivalent numerically stable formula. + * + * l(w, x) = log(1 + \sum_i^{K-1}\exp(margins_i)) - (1-\alpha(y)) margins_{y-1} + * = log(\exp(-maxMargin) + \sum_i^{K-1}\exp(margins_i - maxMargin)) + maxMargin + * - (1-\alpha(y)) margins_{y-1} + * = log(1 + sum) + maxMargin - (1-\alpha(y)) margins_{y-1} + * + * where sum = \exp(-maxMargin) + \sum_i^{K-1}\exp(margins_i - maxMargin) - 1. + * + * Note that each term, (margins_i - maxMargin) in \exp is smaller than zero; as a result, + * overflow will not happen with this formula. + * + * For multiplier, similar trick can be applied as the following, + * + * multiplier = \exp(margins_i) / (1 + \sum_k^{K-1} \exp(margins_i)) - (1-\alpha(y)\delta_{y, i+1}) + * = \exp(margins_i - maxMargin) / (1 + sum) - (1-\alpha(y)\delta_{y, i+1}) + * + * where each term in \exp is also smaller than zero, so overflow is not a concern. + * + * For the detailed mathematical derivation, see the reference at + * http://www.slideshare.net/dbtsai/2014-0620-mlor-36132297 + * + * @param numClasses the number of possible outcomes for k classes classification problem in + * Multinomial Logistic Regression. By default, it is binary logistic regression + * so numClasses will be set to 2. */ @DeveloperApi -class LogisticGradient extends Gradient { - override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { - val margin = -1.0 * dot(data, weights) - val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label - val gradient = data.copy - scal(gradientMultiplier, gradient) - val loss = - if (label > 0) { - // The following is equivalent to log(1 + exp(margin)) but more numerically stable. - MLUtils.log1pExp(margin) - } else { - MLUtils.log1pExp(margin) - margin - } +class LogisticGradient(numClasses: Int) extends Gradient { + def this() = this(2) + + override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { + val gradient = Vectors.zeros(weights.size) + val loss = compute(data, label, weights, gradient) (gradient, loss) } @@ -81,14 +143,104 @@ class LogisticGradient extends Gradient { label: Double, weights: Vector, cumGradient: Vector): Double = { - val margin = -1.0 * dot(data, weights) - val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label - axpy(gradientMultiplier, data, cumGradient) - if (label > 0) { - // The following is equivalent to log(1 + exp(margin)) but more numerically stable. - MLUtils.log1pExp(margin) - } else { - MLUtils.log1pExp(margin) - margin + val dataSize = data.size + + // (weights.size / dataSize + 1) is number of classes + require(weights.size % dataSize == 0 && numClasses == weights.size / dataSize + 1) + numClasses match { + case 2 => + /** + * For Binary Logistic Regression. + * + * Although the loss and gradient calculation for multinomial one is more generalized, + * and multinomial one can also be used in binary case, we still implement a specialized + * binary version for performance reason. + */ + val margin = -1.0 * dot(data, weights) + val multiplier = (1.0 / (1.0 + math.exp(margin))) - label + axpy(multiplier, data, cumGradient) + if (label > 0) { + // The following is equivalent to log(1 + exp(margin)) but more numerically stable. + MLUtils.log1pExp(margin) + } else { + MLUtils.log1pExp(margin) - margin + } + case _ => + /** + * For Multinomial Logistic Regression. + */ + val weightsArray = weights match { + case dv: DenseVector => dv.values + case _ => + throw new IllegalArgumentException( + s"weights only supports dense vector but got type ${weights.getClass}.") + } + val cumGradientArray = cumGradient match { + case dv: DenseVector => dv.values + case _ => + throw new IllegalArgumentException( + s"cumGradient only supports dense vector but got type ${cumGradient.getClass}.") + } + + // marginY is margins(label - 1) in the formula. + var marginY = 0.0 + var maxMargin = Double.NegativeInfinity + var maxMarginIndex = 0 + + val margins = Array.tabulate(numClasses - 1) { i => + var margin = 0.0 + data.foreachActive { (index, value) => + if (value != 0.0) margin += value * weightsArray((i * dataSize) + index) + } + if (i == label.toInt - 1) marginY = margin + if (margin > maxMargin) { + maxMargin = margin + maxMarginIndex = i + } + margin + } + + /** + * When maxMargin > 0, the original formula will cause overflow as we discuss + * in the previous comment. + * We address this by subtracting maxMargin from all the margins, so it's guaranteed + * that all of the new margins will be smaller than zero to prevent arithmetic overflow. + */ + val sum = { + var temp = 0.0 + if (maxMargin > 0) { + for (i <- 0 until numClasses - 1) { + margins(i) -= maxMargin + if (i == maxMarginIndex) { + temp += math.exp(-maxMargin) + } else { + temp += math.exp(margins(i)) + } + } + } else { + for (i <- 0 until numClasses - 1) { + temp += math.exp(margins(i)) + } + } + temp + } + + for (i <- 0 until numClasses - 1) { + val multiplier = math.exp(margins(i)) / (sum + 1.0) - { + if (label != 0.0 && label == i + 1) 1.0 else 0.0 + } + data.foreachActive { (index, value) => + if (value != 0.0) cumGradientArray(i * dataSize + index) += multiplier * value + } + } + + val loss = if (label > 0.0) math.log1p(sum) - marginY else math.log1p(sum) + + if (maxMargin > 0) { + loss + maxMargin + } else { + loss + } } } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala index 0287f04e2c777..17de215b97f9d 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala @@ -98,6 +98,23 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] protected var validateData: Boolean = true + /** + * In `GeneralizedLinearModel`, only single linear predictor is allowed for both weights + * and intercept. However, for multinomial logistic regression, with K possible outcomes, + * we are training K-1 independent binary logistic regression models which requires K-1 sets + * of linear predictor. + * + * As a result, the workaround here is if more than two sets of linear predictors are needed, + * we construct bigger `weights` vector which can hold both weights and intercepts. + * If the intercepts are added, the dimension of `weights` will be + * (numOfLinearPredictor) * (numFeatures + 1) . If the intercepts are not added, + * the dimension of `weights` will be (numOfLinearPredictor) * numFeatures. + * + * Thus, the intercepts will be encapsulated into weights, and we leave the value of intercept + * in GeneralizedLinearModel as zero. + */ + protected var numOfLinearPredictor: Int = 1 + /** * Whether to perform feature scaling before model training to reduce the condition numbers * which can significantly help the optimizer converging faster. The scaling correction will be @@ -106,6 +123,11 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] */ private var useFeatureScaling = false + /** + * The dimension of training features. + */ + protected var numFeatures: Int = 0 + /** * Set if the algorithm should use feature scaling to improve the convergence during optimization. */ @@ -141,8 +163,28 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * RDD of LabeledPoint entries. */ def run(input: RDD[LabeledPoint]): M = { - val numFeatures: Int = input.first().features.size - val initialWeights = Vectors.dense(new Array[Double](numFeatures)) + numFeatures = input.first().features.size + + /** + * When `numOfLinearPredictor > 1`, the intercepts are encapsulated into weights, + * so the `weights` will include the intercepts. When `numOfLinearPredictor == 1`, + * the intercept will be stored as separated value in `GeneralizedLinearModel`. + * This will result in different behaviors since when `numOfLinearPredictor == 1`, + * users have no way to set the initial intercept, while in the other case, users + * can set the intercepts as part of weights. + * + * TODO: See if we can deprecate `intercept` in `GeneralizedLinearModel`, and always + * have the intercept as part of weights to have consistent design. + */ + val initialWeights = { + if (numOfLinearPredictor == 1) { + Vectors.dense(new Array[Double](numFeatures)) + } else if (addIntercept) { + Vectors.dense(new Array[Double]((numFeatures + 1) * numOfLinearPredictor)) + } else { + Vectors.dense(new Array[Double](numFeatures * numOfLinearPredictor)) + } + } run(input, initialWeights) } @@ -151,6 +193,7 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * of LabeledPoint entries starting from the initial weights provided. */ def run(input: RDD[LabeledPoint], initialWeights: Vector): M = { + numFeatures = input.first().features.size if (input.getStorageLevel == StorageLevel.NONE) { logWarning("The input data is not directly cached, which may hurt performance if its" @@ -182,14 +225,14 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * Currently, it's only enabled in LogisticRegressionWithLBFGS */ val scaler = if (useFeatureScaling) { - (new StandardScaler).fit(input.map(x => x.features)) + (new StandardScaler(withStd = true, withMean = false)).fit(input.map(x => x.features)) } else { null } // Prepend an extra variable consisting of all 1.0's for the intercept. val data = if (addIntercept) { - if(useFeatureScaling) { + if (useFeatureScaling) { input.map(labeledPoint => (labeledPoint.label, appendBias(scaler.transform(labeledPoint.features)))) } else { @@ -203,21 +246,31 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] } } - val initialWeightsWithIntercept = if (addIntercept) { + /** + * TODO: For better convergence, in logistic regression, the intercepts should be computed + * from the prior probability distribution of the outcomes; for linear regression, + * the intercept should be set as the average of response. + */ + val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) { appendBias(initialWeights) } else { + /** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */ initialWeights } val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept) - val intercept = if (addIntercept) weightsWithIntercept(weightsWithIntercept.size - 1) else 0.0 - var weights = - if (addIntercept) { - Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) - } else { - weightsWithIntercept - } + val intercept = if (addIntercept && numOfLinearPredictor == 1) { + weightsWithIntercept(weightsWithIntercept.size - 1) + } else { + 0.0 + } + + var weights = if (addIntercept && numOfLinearPredictor == 1) { + Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) + } else { + weightsWithIntercept + } /** * The weights and intercept are trained in the scaled space; we're converting them back to @@ -228,7 +281,29 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * is the coefficient in the original space, and v_i is the variance of the column i. */ if (useFeatureScaling) { - weights = scaler.transform(weights) + if (numOfLinearPredictor == 1) { + weights = scaler.transform(weights) + } else { + /** + * For `numOfLinearPredictor > 1`, we have to transform the weights back to the original + * scale for each set of linear predictor. Note that the intercepts have to be explicitly + * excluded when `addIntercept == true` since the intercepts are part of weights now. + */ + var i = 0 + val n = weights.size / numOfLinearPredictor + val weightsArray = weights.toArray + while (i < numOfLinearPredictor) { + val start = i * n + val end = (i + 1) * n - { if (addIntercept) 1 else 0 } + + val partialWeightsArray = scaler.transform( + Vectors.dense(weightsArray.slice(start, end))).toArray + + System.arraycopy(partialWeightsArray, 0, weightsArray, start, partialWeightsArray.size) + i += 1 + } + weights = Vectors.dense(weightsArray) + } } // Warn at the end of the run as well, for increased visibility. diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala index 45f95482a1def..be335a1aca58a 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala @@ -34,11 +34,27 @@ object DataValidators extends Logging { * * @return True if labels are all zero or one, false otherwise. */ - val binaryLabelValidator: RDD[LabeledPoint] => Boolean = { data => + val binaryLabelValidator: RDD[LabeledPoint] => Boolean = { data => val numInvalid = data.filter(x => x.label != 1.0 && x.label != 0.0).count() if (numInvalid != 0) { logError("Classification labels should be 0 or 1. Found " + numInvalid + " invalid labels") } numInvalid == 0 } + + /** + * Function to check if labels used for k class multi-label classification are + * in the range of {0, 1, ..., k - 1}. + * + * @return True if labels are all in the range of {0, 1, ..., k-1}, false otherwise. + */ + def multiLabelValidator(k: Int): RDD[LabeledPoint] => Boolean = { data => + val numInvalid = data.filter(x => + x.label - x.label.toInt != 0.0 || x.label < 0 || x.label > k - 1).count() + if (numInvalid != 0) { + logError("Classification labels should be in {0 to " + (k - 1) + "}. " + + "Found " + numInvalid + " invalid labels") + } + numInvalid == 0 + } } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala index 94b0e00f37267..3fb45938f75db 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala @@ -17,13 +17,14 @@ package org.apache.spark.mllib.classification +import scala.util.control.Breaks._ import scala.util.Random import scala.collection.JavaConversions._ import org.scalatest.FunSuite import org.scalatest.Matchers -import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.regression._ import org.apache.spark.mllib.util.{LocalClusterSparkContext, MLlibTestSparkContext} import org.apache.spark.mllib.util.TestingUtils._ @@ -55,6 +56,97 @@ object LogisticRegressionSuite { val testData = (0 until nPoints).map(i => LabeledPoint(y(i), Vectors.dense(Array(x1(i))))) testData } + + /** + * Generates `k` classes multinomial synthetic logistic input in `n` dimensional space given the + * model weights and mean/variance of the features. The synthetic data will be drawn from + * the probability distribution constructed by weights using the following formula. + * + * P(y = 0 | x) = 1 / norm + * P(y = 1 | x) = exp(x * w_1) / norm + * P(y = 2 | x) = exp(x * w_2) / norm + * ... + * P(y = k-1 | x) = exp(x * w_{k-1}) / norm + * where norm = 1 + exp(x * w_1) + exp(x * w_2) + ... + exp(x * w_{k-1}) + * + * @param weights matrix is flatten into a vector; as a result, the dimension of weights vector + * will be (k - 1) * (n + 1) if `addIntercept == true`, and + * if `addIntercept != true`, the dimension will be (k - 1) * n. + * @param xMean the mean of the generated features. Lots of time, if the features are not properly + * standardized, the algorithm with poor implementation will have difficulty + * to converge. + * @param xVariance the variance of the generated features. + * @param addIntercept whether to add intercept. + * @param nPoints the number of instance of generated data. + * @param seed the seed for random generator. For consistent testing result, it will be fixed. + */ + def generateMultinomialLogisticInput( + weights: Array[Double], + xMean: Array[Double], + xVariance: Array[Double], + addIntercept: Boolean, + nPoints: Int, + seed: Int): Seq[LabeledPoint] = { + val rnd = new Random(seed) + + val xDim = xMean.size + val xWithInterceptsDim = if (addIntercept) xDim + 1 else xDim + val nClasses = weights.size / xWithInterceptsDim + 1 + + val x = Array.fill[Vector](nPoints)(Vectors.dense(Array.fill[Double](xDim)(rnd.nextGaussian()))) + + x.map(vector => { + // This doesn't work if `vector` is a sparse vector. + val vectorArray = vector.toArray + var i = 0 + while (i < vectorArray.size) { + vectorArray(i) = vectorArray(i) * math.sqrt(xVariance(i)) + xMean(i) + i += 1 + } + }) + + val y = (0 until nPoints).map { idx => + val xArray = x(idx).toArray + val margins = Array.ofDim[Double](nClasses) + val probs = Array.ofDim[Double](nClasses) + + for (i <- 0 until nClasses - 1) { + for (j <- 0 until xDim) margins(i + 1) += weights(i * xWithInterceptsDim + j) * xArray(j) + if (addIntercept) margins(i + 1) += weights((i + 1) * xWithInterceptsDim - 1) + } + // Preventing the overflow when we compute the probability + val maxMargin = margins.max + if (maxMargin > 0) for (i <-0 until nClasses) margins(i) -= maxMargin + + // Computing the probabilities for each class from the margins. + val norm = { + var temp = 0.0 + for (i <- 0 until nClasses) { + probs(i) = math.exp(margins(i)) + temp += probs(i) + } + temp + } + for (i <-0 until nClasses) probs(i) /= norm + + // Compute the cumulative probability so we can generate a random number and assign a label. + for (i <- 1 until nClasses) probs(i) += probs(i - 1) + val p = rnd.nextDouble() + var y = 0 + breakable { + for (i <- 0 until nClasses) { + if (p < probs(i)) { + y = i + break + } + } + } + y + } + + val testData = (0 until nPoints).map(i => LabeledPoint(y(i), x(i))) + testData + } } class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext with Matchers { @@ -285,6 +377,91 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext with M assert(modelB1.weights(0) !~== modelB3.weights(0) * 1.0E6 absTol 0.1) } + test("multinomial logistic regression with LBFGS") { + val nPoints = 10000 + + /** + * The following weights and xMean/xVariance are computed from iris dataset with lambda = 0.2. + * As a result, we are actually drawing samples from probability distribution of built model. + */ + val weights = Array( + -0.57997, 0.912083, -0.371077, -0.819866, 2.688191, + -0.16624, -0.84355, -0.048509, -0.301789, 4.170682) + + val xMean = Array(5.843, 3.057, 3.758, 1.199) + val xVariance = Array(0.6856, 0.1899, 3.116, 0.581) + + val testData = LogisticRegressionSuite.generateMultinomialLogisticInput( + weights, xMean, xVariance, true, nPoints, 42) + + val testRDD = sc.parallelize(testData, 2) + testRDD.cache() + + val lr = new LogisticRegressionWithLBFGS().setIntercept(true).setNumClasses(3) + lr.optimizer.setConvergenceTol(1E-15).setNumIterations(200) + + val model = lr.run(testRDD) + + /** + * The following is the instruction to reproduce the model using R's glmnet package. + * + * First of all, using the following scala code to save the data into `path`. + * + * testRDD.map(x => x.label+ ", " + x.features(0) + ", " + x.features(1) + ", " + + * x.features(2) + ", " + x.features(3)).saveAsTextFile("path") + * + * Using the following R code to load the data and train the model using glmnet package. + * + * library("glmnet") + * data <- read.csv("path", header=FALSE) + * label = factor(data$V1) + * features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5)) + * weights = coef(glmnet(features,label, family="multinomial", alpha = 0, lambda = 0)) + * + * The model weights of mutinomial logstic regression in R have `K` set of linear predictors + * for `K` classes classification problem; however, only `K-1` set is required if the first + * outcome is chosen as a "pivot", and the other `K-1` outcomes are separately regressed against + * the pivot outcome. This can be done by subtracting the first weights from those `K-1` set + * weights. The mathematical discussion and proof can be found here: + * http://en.wikipedia.org/wiki/Multinomial_logistic_regression + * + * weights1 = weights$`1` - weights$`0` + * weights2 = weights$`2` - weights$`0` + * + * > weights1 + * 5 x 1 sparse Matrix of class "dgCMatrix" + * s0 + * 2.6228269 + * data.V2 -0.5837166 + * data.V3 0.9285260 + * data.V4 -0.3783612 + * data.V5 -0.8123411 + * > weights2 + * 5 x 1 sparse Matrix of class "dgCMatrix" + * s0 + * 4.11197445 + * data.V2 -0.16918650 + * data.V3 -0.81104784 + * data.V4 -0.06463799 + * data.V5 -0.29198337 + */ + + val weightsR = Vectors.dense(Array( + -0.5837166, 0.9285260, -0.3783612, -0.8123411, 2.6228269, + -0.1691865, -0.811048, -0.0646380, -0.2919834, 4.1119745)) + + assert(model.weights ~== weightsR relTol 0.05) + + val validationData = LogisticRegressionSuite.generateMultinomialLogisticInput( + weights, xMean, xVariance, true, nPoints, 17) + val validationRDD = sc.parallelize(validationData, 2) + // The validation accuracy is not good since this model (even the original weights) doesn't have + // very steep curve in logistic function so that when we draw samples from distribution, it's + // very easy to assign to another labels. However, this prediction result is consistent to R. + validatePrediction(model.predict(validationRDD.map(_.features)).collect(), validationData, 0.47) + + } + } class LogisticRegressionClusterSuite extends FunSuite with LocalClusterSparkContext { From dca6faa29a8dd805cf364ed2683efaf7928f2112 Mon Sep 17 00:00:00 2001 From: seayi <405078363@qq.com> Date: Mon, 2 Feb 2015 16:06:52 -0800 Subject: [PATCH 27/28] [SPARK-5195][sql]Update HiveMetastoreCatalog.scala(override the MetastoreRelation's sameresult method only compare databasename and table name) override the MetastoreRelation's sameresult method only compare databasename and table name because in previous : cache table t1; select count(*) from t1; it will read data from memory but the sql below will not,instead it read from hdfs: select count(*) from t1 t; because cache data is keyed by logical plan and compare with sameResult ,so when table with alias the same table 's logicalplan is not the same logical plan with out alias so modify the sameresult method only compare databasename and table name Author: seayi <405078363@qq.com> Author: Michael Armbrust Closes #3898 from seayi/branch-1.2 and squashes the following commits: 8f0c7d2 [seayi] Update CachedTableSuite.scala a277120 [seayi] Update HiveMetastoreCatalog.scala 8d910aa [seayi] Update HiveMetastoreCatalog.scala --- .../org/apache/spark/sql/hive/HiveMetastoreCatalog.scala | 9 +++++++++ .../org/apache/spark/sql/hive/CachedTableSuite.scala | 6 ++++++ 2 files changed, 15 insertions(+) diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala index 1a49f09bd9988..d910ee950904d 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala @@ -519,6 +519,15 @@ private[hive] case class MetastoreRelation } ) + /** Only compare database and tablename, not alias. */ + override def sameResult(plan: LogicalPlan): Boolean = { + plan match { + case mr: MetastoreRelation => + mr.databaseName == databaseName && mr.tableName == tableName + case _ => false + } + } + val tableDesc = HiveShim.getTableDesc( Class.forName( hiveQlTable.getSerializationLib, diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala index 61e5117feab10..7c8b5205e239e 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala @@ -64,6 +64,12 @@ class CachedTableSuite extends QueryTest { sql("SELECT * FROM src"), preCacheResults) + assertCached(sql("SELECT * FROM src s")) + + checkAnswer( + sql("SELECT * FROM src s"), + preCacheResults) + uncacheTable("src") assertCached(sql("SELECT * FROM src"), 0) } From 8aa3cfff661753d6d87a8d9a87373d403436dd92 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Mon, 2 Feb 2015 16:55:36 -0800 Subject: [PATCH 28/28] [SPARK-5514] DataFrame.collect should call executeCollect Author: Reynold Xin Closes #4313 from rxin/SPARK-5514 and squashes the following commits: e34e91b [Reynold Xin] [SPARK-5514] DataFrame.collect should call executeCollect --- sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 1096e396591df..5d42d4428d09e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -541,7 +541,7 @@ class DataFrame protected[sql]( /** * Returns an array that contains all of [[Row]]s in this [[DataFrame]]. */ - override def collect(): Array[Row] = rdd.collect() + override def collect(): Array[Row] = queryExecution.executedPlan.executeCollect() /** * Returns a Java list that contains all of [[Row]]s in this [[DataFrame]].