-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
274 lines (228 loc) · 14.6 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import time
import numpy as np
import torch
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from utils import *
from parameter import *
from local_node_manager_quadtree import Local_node_manager
# from global_node_manager import Global_node_manager
class Agent:
def __init__(self, target_location, policy_net, device='cpu', plot=False):
self.device = device
self.plot = plot
self.policy_net = policy_net
self.init_target = True
# location and global map
self.location = None
self.global_map_info = None
self.ground_truth_info = None
self.local_center = None
self.target_location = target_location
# local map related parameters
self.cell_size = CELL_SIZE
self.downsample_size = NODE_RESOLUTION # cell
self.downsampled_cell_size = self.cell_size * self.downsample_size # meter
self.local_map_size = LOCAL_MAP_SIZE # meter
self.extended_local_map_size = EXTENDED_LOCAL_MAP_SIZE
# local map and extended local map
self.local_map_info = None
self.extended_local_map_info = None
# local frontiers
self.local_frontier = None
# local node managers
self.local_node_manager = Local_node_manager(plot=self.plot)
# local graph
self.local_node_coords, self.utility, self.guidepost, self.centers, self.center_beacon = None, None, None, None, None
self.current_local_index, self.local_adjacent_matrix, self.local_neighbor_indices = None, None, None
def update_ground_truth_map(self, ground_truth_info):
self.ground_truth_info = ground_truth_info
self.local_node_manager.update_all_graph(self.ground_truth_info, self.target_location)
def update_global_map(self, global_map_info):
# no need in training because of shallow copy
self.global_map_info = global_map_info
def update_local_map(self, location):
self.local_map_info = self.get_local_map(location)
self.extended_local_map_info = self.get_extended_local_map(location)
def update_location(self, location):
self.location = location
node = self.local_node_manager.local_nodes_dict.find((location[0], location[1]))
if node:
node.data.set_visited()
def update_local_frontiers(self):
self.local_frontier = get_frontier_in_map(self.extended_local_map_info)
def update_planning_state(self, global_map_info, location):
self.update_global_map(global_map_info)
self.update_location(location)
self.local_center = self.location
self.update_local_map(self.local_center)
self.update_local_frontiers()
if self.init_target:
self.local_node_manager.add_node_to_dict(self.target_location, self.local_frontier, self.global_map_info)
self.init_target = False
self.local_node_manager.update_local_graph(self.location,
self.local_frontier,
self.local_map_info,
self.extended_local_map_info, self.global_map_info, self.target_location)
self.local_node_coords, self.utility, self.guidepost, self.local_adjacent_matrix, self.current_local_index, self.local_neighbor_indices, self.centers, self.center_beacon, self.optimal_center, self.optimal_center_in_center_lst = \
self.local_node_manager.get_all_node_graph(self.location, self.target_location, global_map_info)
def get_local_observation(self):
local_node_coords = self.local_node_coords
local_node_utility = self.utility.reshape(-1, 1)
local_node_guidepost = self.guidepost.reshape(-1, 1)
center_beacon = self.center_beacon.reshape(-1, 1)
current_local_index = self.current_local_index
local_edge_mask = self.local_adjacent_matrix
current_local_edge = self.local_neighbor_indices
n_local_node = local_node_coords.shape[0]
target_coords = self.target_location.repeat(n_local_node)
target_node_coords = target_coords.reshape(n_local_node, 2)
current_local_node_coords = local_node_coords[self.current_local_index]
local_node_coords = np.concatenate((local_node_coords[:, 0].reshape(-1, 1) - current_local_node_coords[0],
local_node_coords[:, 1].reshape(-1, 1) - current_local_node_coords[1]),
axis=-1) / 60
target_node_coords = np.concatenate((target_node_coords[:, 0].reshape(-1, 1) - current_local_node_coords[0],
target_node_coords[:, 1].reshape(-1, 1) - current_local_node_coords[1]),
axis=-1) / 60
local_node_inputs = np.concatenate((local_node_coords, local_node_utility, local_node_guidepost, target_node_coords, center_beacon), axis=1)
local_node_inputs = torch.FloatTensor(local_node_inputs).unsqueeze(0).to(self.device)
assert local_node_coords.shape[0] < LOCAL_NODE_PADDING_SIZE, f"nodes number is {local_node_coords.shape[0]}"
padding = torch.nn.ZeroPad2d((0, 0, 0, LOCAL_NODE_PADDING_SIZE - n_local_node))
local_node_inputs = padding(local_node_inputs)
local_node_padding_mask = torch.zeros((1, 1, n_local_node), dtype=torch.int16).to(self.device)
local_node_padding = torch.ones((1, 1, LOCAL_NODE_PADDING_SIZE - n_local_node), dtype=torch.int16).to(
self.device)
local_node_padding_mask = torch.cat((local_node_padding_mask, local_node_padding), dim=-1)
current_local_index = torch.tensor([current_local_index]).reshape(1, 1, 1).to(self.device)
local_node_coords_to_check = self.local_node_coords[:, 0] + self.local_node_coords[:, 1] * 1j
# get target index
target_node_index = np.argwhere(local_node_coords_to_check == self.target_location[0] + self.target_location[1] * 1j)
if target_node_index or target_node_index == [[0]]:
target_node_index = target_node_index[0][0]
target_index = torch.tensor([target_node_index]).unsqueeze(0).unsqueeze(0).to(self.device) # (1,1,1)
# get the centers index and paddings
all_center_node_index = []
for center in self.centers:
center_index = np.argwhere(local_node_coords_to_check == center[0] + center[1] * 1j)
if center_index or center_index == [[0]]:
center_index = center_index[0][0]
all_center_node_index.append(center_index)
while len(all_center_node_index) < LOCAL_K_SIZE:
all_center_node_index.append(359)
all_center_node_index = all_center_node_index[:LOCAL_K_SIZE]
all_center_index = torch.tensor(all_center_node_index).unsqueeze(0).unsqueeze(0).to(self.device)
center_padding_mask = torch.zeros((1, 1, LOCAL_K_SIZE), dtype=torch.int64).to(self.device)
center_one = torch.ones_like(center_padding_mask, dtype=torch.int64).to(self.device)
center_padding_mask = torch.where(all_center_index == 359, center_one, center_padding_mask)
# need to improve this center mask! ! !
local_edge_mask = torch.tensor(local_edge_mask).unsqueeze(0).to(self.device)
padding = torch.nn.ConstantPad2d(
(0, LOCAL_NODE_PADDING_SIZE - n_local_node, 0, LOCAL_NODE_PADDING_SIZE - n_local_node), 1)
local_edge_mask = padding(local_edge_mask)
current_in_edge = np.argwhere(current_local_edge == self.current_local_index)[0][0]
current_local_edge = torch.tensor(current_local_edge).unsqueeze(0)
k_size = current_local_edge.size()[-1]
padding = torch.nn.ConstantPad1d((0, LOCAL_K_SIZE - k_size), 0)
current_local_edge = padding(current_local_edge)
current_local_edge = current_local_edge.unsqueeze(-1)
local_edge_padding_mask = torch.zeros((1, 1, k_size), dtype=torch.int16).to(self.device)
local_edge_padding_mask[0, 0, current_in_edge] = 1
padding = torch.nn.ConstantPad1d((0, LOCAL_K_SIZE - k_size), 1)
local_edge_padding_mask = padding(local_edge_padding_mask)
return [local_node_inputs, current_local_edge, current_local_index, target_index, all_center_index, local_node_padding_mask, local_edge_padding_mask, local_edge_mask, center_padding_mask]
def select_next_waypoint(self, local_observation, i):
_, current_local_edge, _, _, _, _, _, _, _ = local_observation
with torch.no_grad():
_, action_logp, _, _, _, _, _, _ = self.policy_net(*local_observation)
action_index = torch.multinomial(action_logp.exp(), 1).long().squeeze(1)
# action_index = torch.argmax(logp, dim=1).long()
next_node_index = current_local_edge[0, action_index.item(), 0].item()
next_position = self.local_node_coords[next_node_index]
return next_position, action_index
def get_local_map(self, location):
local_map_origin_x = (location[
0] - self.local_map_size / 2) // self.downsampled_cell_size * self.downsampled_cell_size
local_map_origin_y = (location[
1] - self.local_map_size / 2) // self.downsampled_cell_size * self.downsampled_cell_size
local_map_top_x = local_map_origin_x + self.local_map_size
local_map_top_y = local_map_origin_y + self.local_map_size
min_x = self.global_map_info.map_origin_x
min_y = self.global_map_info.map_origin_y
max_x = self.global_map_info.map_origin_x + self.cell_size * self.global_map_info.map.shape[1]
max_y = self.global_map_info.map_origin_y + self.cell_size * self.global_map_info.map.shape[0]
if local_map_origin_x < min_x:
local_map_origin_x = min_x
if local_map_origin_y < min_y:
local_map_origin_y = min_y
if local_map_top_x > max_x:
local_map_top_x = max_x
if local_map_top_y > max_y:
local_map_top_y = max_y
local_map_origin_x = np.around(local_map_origin_x, 1)
local_map_origin_y = np.around(local_map_origin_y, 1)
local_map_top_x = np.around(local_map_top_x, 1)
local_map_top_y = np.around(local_map_top_y, 1)
local_map_origin = np.array([local_map_origin_x, local_map_origin_y])
local_map_origin_in_global_map = get_cell_position_from_coords(local_map_origin, self.global_map_info)
local_map_top = np.array([local_map_top_x, local_map_top_y])
local_map_top_in_global_map = get_cell_position_from_coords(local_map_top, self.global_map_info)
local_map = self.global_map_info.map[
local_map_origin_in_global_map[1]:local_map_top_in_global_map[1],
local_map_origin_in_global_map[0]:local_map_top_in_global_map[0]]
local_map_info = Map_info(local_map, local_map_origin_x, local_map_origin_y, self.cell_size)
return local_map_info
def get_extended_local_map(self, location):
# expanding local map to involve all related frontiers
local_map_origin_x = (location[
0] - self.extended_local_map_size / 2) // self.downsampled_cell_size * self.downsampled_cell_size
local_map_origin_y = (location[
1] - self.extended_local_map_size / 2) // self.downsampled_cell_size * self.downsampled_cell_size
local_map_top_x = local_map_origin_x + self.extended_local_map_size
local_map_top_y = local_map_origin_y + self.extended_local_map_size
min_x = self.global_map_info.map_origin_x
min_y = self.global_map_info.map_origin_y
max_x = self.global_map_info.map_origin_x + self.cell_size * self.global_map_info.map.shape[1]
max_y = self.global_map_info.map_origin_y + self.cell_size * self.global_map_info.map.shape[0]
if local_map_origin_x < min_x:
local_map_origin_x = min_x
if local_map_origin_y < min_y:
local_map_origin_y = min_y
if local_map_top_x > max_x:
local_map_top_x = max_x
if local_map_top_y > max_y:
local_map_top_y = max_y
local_map_origin_x = np.around(local_map_origin_x, 1)
local_map_origin_y = np.around(local_map_origin_y, 1)
local_map_top_x = np.around(local_map_top_x, 1)
local_map_top_y = np.around(local_map_top_y, 1)
local_map_origin = np.array([local_map_origin_x, local_map_origin_y])
local_map_origin_in_global_map = get_cell_position_from_coords(local_map_origin, self.global_map_info)
local_map_top = np.array([local_map_top_x, local_map_top_y])
local_map_top_in_global_map = get_cell_position_from_coords(local_map_top, self.global_map_info)
local_map = self.global_map_info.map[
local_map_origin_in_global_map[1]:local_map_top_in_global_map[1],
local_map_origin_in_global_map[0]:local_map_top_in_global_map[0]]
local_map_info = Map_info(local_map, local_map_origin_x, local_map_origin_y, self.cell_size)
return local_map_info
def plot_local_env(self):
plt.switch_backend('agg')
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 2)
nodes = get_cell_position_from_coords(self.local_node_coords, self.global_map_info)
# frontiers = get_cell_position_from_coords(self.local_frontier, self.local_map_info)
robot = get_cell_position_from_coords(self.location, self.global_map_info)
target_node = get_cell_position_from_coords(self.target_location, self.global_map_info)
plt.imshow(self.global_map_info.map, cmap='gray')
plt.axis('off')
plt.scatter(nodes[:, 0], nodes[:, 1], c=self.utility, zorder=2)
#plt.scatter(frontiers[:, 0], frontiers[:, 1], c='r')
plt.plot(robot[0], robot[1], 'ro', markersize=10, zorder=5)
plt.plot(target_node[0], target_node[1], 'rs', markersize=10, zorder=5)
for i in range(len(self.local_node_manager.x_center)):
plt.plot((self.local_node_manager.x_center[i] - self.global_map_info.map_origin_x) / self.cell_size,
(self.local_node_manager.y_center[i] - self.global_map_info.map_origin_y) / self.cell_size, 'tan', zorder=1)
# print("local neighbor indices", len(self.local_neighbor_indices))
for i in range(len(self.local_neighbor_indices)):
indice = self.local_neighbor_indices[i]
plt.plot(([self.local_node_coords[indice][0], self.location[0]] - self.global_map_info.map_origin_x) / self.cell_size,
([self.local_node_coords[indice][1], self.location[1]] - self.global_map_info.map_origin_y) / self.cell_size, 'r', zorder=1)