-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
336 lines (277 loc) · 17.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from parameter import *
# a pointer network layer for policy output
class SingleHeadAttention(nn.Module):
def __init__(self, embedding_dim):
super(SingleHeadAttention, self).__init__()
self.input_dim = embedding_dim
self.embedding_dim = embedding_dim
self.value_dim = embedding_dim
self.key_dim = self.value_dim
self.tanh_clipping = 10
self.norm_factor = 1 / math.sqrt(self.key_dim)
self.w_query = nn.Parameter(torch.Tensor(self.input_dim, self.key_dim))
self.w_key = nn.Parameter(torch.Tensor(self.input_dim, self.key_dim))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, q, k, mask=None):
n_batch, n_key, n_dim = k.size()
n_query = q.size(1)
k_flat = k.reshape(-1, n_dim)
q_flat = q.reshape(-1, n_dim)
shape_k = (n_batch, n_key, -1)
shape_q = (n_batch, n_query, -1)
Q = torch.matmul(q_flat, self.w_query).view(shape_q)
K = torch.matmul(k_flat, self.w_key).view(shape_k)
U = self.norm_factor * torch.matmul(Q, K.transpose(1, 2))
U = self.tanh_clipping * torch.tanh(U)
if mask is not None:
U = U.masked_fill(mask == 1, -1e8)
attention = torch.log_softmax(U, dim=-1) # n_batch*n_query*n_key
return attention
# standard multi head attention layer
class MultiHeadAttention(nn.Module):
def __init__(self, embedding_dim, n_heads=8):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.input_dim = embedding_dim
self.embedding_dim = embedding_dim
self.value_dim = self.embedding_dim // self.n_heads
self.key_dim = self.value_dim
self.norm_factor = 1 / math.sqrt(self.key_dim)
self.w_query = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.key_dim))
self.w_key = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.key_dim))
self.w_value = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.value_dim))
self.w_out = nn.Parameter(torch.Tensor(self.n_heads, self.value_dim, self.embedding_dim))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, q, k=None, v=None, key_padding_mask=None, attn_mask=None):
if k is None:
k = q
if v is None:
v = q
n_batch, n_key, n_dim = k.size()
n_query = q.size(1)
n_value = v.size(1)
k_flat = k.contiguous().view(-1, n_dim)
v_flat = v.contiguous().view(-1, n_dim)
q_flat = q.contiguous().view(-1, n_dim)
shape_v = (self.n_heads, n_batch, n_value, -1)
shape_k = (self.n_heads, n_batch, n_key, -1)
shape_q = (self.n_heads, n_batch, n_query, -1)
Q = torch.matmul(q_flat, self.w_query).view(shape_q) # n_heads*batch_size*n_query*key_dim
K = torch.matmul(k_flat, self.w_key).view(shape_k) # n_heads*batch_size*targets_size*key_dim
V = torch.matmul(v_flat, self.w_value).view(shape_v) # n_heads*batch_size*targets_size*value_dim
U = self.norm_factor * torch.matmul(Q, K.transpose(2, 3)) # n_heads*batch_size*n_query*targets_size
if attn_mask is not None:
attn_mask = attn_mask.view(1, n_batch, n_query, n_key).expand_as(U)
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.repeat(1, n_query, 1)
key_padding_mask = key_padding_mask.view(1, n_batch, n_query, n_key).expand_as(U) # copy for n_heads times
if attn_mask is not None and key_padding_mask is not None:
mask = (attn_mask + key_padding_mask)
elif attn_mask is not None:
mask = attn_mask
elif key_padding_mask is not None:
mask = key_padding_mask
else:
mask = None
if mask is not None:
U = U.masked_fill(mask > 0, -1e8)
attention = torch.softmax(U, dim=-1) # n_heads*batch_size*n_query*targets_size
heads = torch.matmul(attention, V) # n_heads*batch_size*n_query*value_dim
# out = heads.permute(1, 2, 0, 3).reshape(n_batch, n_query, n_dim)
out = torch.mm(
heads.permute(1, 2, 0, 3).reshape(-1, self.n_heads * self.value_dim),
# batch_size*n_query*n_heads*value_dim
self.w_out.view(-1, self.embedding_dim)
# n_heads*value_dim*embedding_dim
).view(-1, n_query, self.embedding_dim)
return out, attention # batch_size*n_query*embedding_dim
class Normalization(nn.Module):
def __init__(self, embedding_dim):
super(Normalization, self).__init__()
self.normalizer = nn.LayerNorm(embedding_dim)
def forward(self, input):
return self.normalizer(input.view(-1, input.size(-1))).view(*input.size())
class EncoderLayer(nn.Module):
def __init__(self, embedding_dim, n_head):
super(EncoderLayer, self).__init__()
self.multiHeadAttention = MultiHeadAttention(embedding_dim, n_head)
self.normalization1 = Normalization(embedding_dim)
self.feedForward = nn.Sequential(nn.Linear(embedding_dim, 512), nn.ReLU(inplace=True),
nn.Linear(512, embedding_dim))
self.normalization2 = Normalization(embedding_dim)
def forward(self, src, key_padding_mask=None, attn_mask=None):
h0 = src
h = self.normalization1(src)
h, _ = self.multiHeadAttention(q=h, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
h = h + h0
h1 = h
h = self.normalization2(h)
h = self.feedForward(h)
h2 = h + h1
return h2
class DecoderLayer(nn.Module):
def __init__(self, embedding_dim, n_head):
super(DecoderLayer, self).__init__()
self.multiHeadAttention = MultiHeadAttention(embedding_dim, n_head)
self.normalization1 = Normalization(embedding_dim)
self.feedForward = nn.Sequential(nn.Linear(embedding_dim, 512),
nn.ReLU(inplace=True),
nn.Linear(512, embedding_dim))
self.normalization2 = Normalization(embedding_dim)
def forward(self, tgt, memory, key_padding_mask=None, attn_mask=None):
h0 = tgt
tgt = self.normalization1(tgt)
memory = self.normalization1(memory)
h, w = self.multiHeadAttention(q=tgt, k=memory, v=memory, key_padding_mask=key_padding_mask,
attn_mask=attn_mask)
h = h + h0
h1 = h
h = self.normalization2(h)
h = self.feedForward(h)
h2 = h + h1
return h2, w
class Encoder(nn.Module):
def __init__(self, embedding_dim=128, n_head=8, n_layer=1):
super(Encoder, self).__init__()
self.layers = nn.ModuleList(EncoderLayer(embedding_dim, n_head) for i in range(n_layer))
def forward(self, src, key_padding_mask=None, attn_mask=None):
for layer in self.layers:
src = layer(src, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return src
class Decoder(nn.Module):
def __init__(self, embedding_dim=128, n_head=8, n_layer=1):
super(Decoder, self).__init__()
self.layers = nn.ModuleList([DecoderLayer(embedding_dim, n_head) for i in range(n_layer)])
def forward(self, tgt, memory, key_padding_mask=None, attn_mask=None):
for layer in self.layers:
tgt, w = layer(tgt, memory, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return tgt, w
class PolicyNet(nn.Module):
def __init__(self, input_dim, embedding_dim):
super(PolicyNet, self).__init__()
self.initial_embedding = nn.Linear(input_dim, embedding_dim) # layer for non-end position
self.target_embedding = nn.Linear(embedding_dim * 2, embedding_dim)
self.current_embedding2 = nn.Linear(embedding_dim * 3, embedding_dim)
self.encoder = Encoder(embedding_dim=embedding_dim, n_head=8, n_layer=6)
self.target_decoder = Decoder(embedding_dim=embedding_dim, n_head=8, n_layer=1)
self.current_node_decoder2 = Decoder(embedding_dim=embedding_dim, n_head=8, n_layer=1)
self.pointer1 = SingleHeadAttention(embedding_dim)
self.pointer2 = SingleHeadAttention(embedding_dim)
def graph_encoder_and_center_decoder(self, node_inputs, node_padding_mask, edge_mask, center_mask, center_index, target_index, current_index, edge_inputs):
# encoder
node_feature = self.initial_embedding(node_inputs)
enhanced_node_feature = self.encoder(src=node_feature, key_padding_mask=node_padding_mask, attn_mask=edge_mask)
# decoder1 - select center
center_index = center_index.permute(0, 2, 1)
embedding_dim = enhanced_node_feature.size()[2]
target_node_feature = torch.gather(enhanced_node_feature, 1, target_index.repeat(1, 1, embedding_dim))
current_node_feature = torch.gather(enhanced_node_feature, 1, current_index.repeat(1, 1, embedding_dim))
center_node_features = torch.gather(enhanced_node_feature, 1, center_index.repeat(1, 1, embedding_dim))
enhanced_target_node_feature, _ = self.target_decoder(target_node_feature, enhanced_node_feature, node_padding_mask)
embedding_target_node_feature = self.target_embedding(torch.cat((enhanced_target_node_feature, target_node_feature), dim=-1))
center_logp = self.pointer1(embedding_target_node_feature, center_node_features, center_mask)
center_logp = center_logp.squeeze(1) # batch_size*k_size
center_logp_index = torch.argmax(center_logp, dim=1).long()
selected_center_index = center_index[torch.arange(center_index.size(0)), center_logp_index, :]
selected_center_node_feature = center_node_features[torch.arange(center_node_features.size(0)), center_logp_index, :]
selected_center_node_feature = selected_center_node_feature.unsqueeze(1)
return enhanced_node_feature, current_node_feature, selected_center_index, selected_center_node_feature, center_logp, center_node_features
def output_policy(self, enhanced_node_feature, current_node_feature, edge_inputs, edge_padding_mask, selected_center_feature, node_padding_mask):
# decoder2 - select next move based on the selected center
current_edge = edge_inputs
embedding_dim = enhanced_node_feature.size()[2]
if edge_padding_mask is not None:
current_mask = edge_padding_mask
# print(current_mask)
else:
current_mask = None
current_mask[:,:,0] = 1 # don't stay at current position
neighboring_feature = torch.gather(enhanced_node_feature, 1, current_edge.repeat(1, 1, embedding_dim))
enhanced_current_node_feature, _ = self.current_node_decoder2(current_node_feature, enhanced_node_feature, node_padding_mask)
# selected_center_feature = selected_center_feature.unsqueeze(1)
embedding_current_node_feature = self.current_embedding2(torch.cat((enhanced_current_node_feature, current_node_feature, selected_center_feature), dim=-1))
action_logp = self.pointer2(embedding_current_node_feature, neighboring_feature, current_mask)
action_logp= action_logp.squeeze(1) # batch_size*k_size
action_logp_index = torch.argmax(action_logp, dim=1).long()
selected_action_index = current_edge[torch.arange(current_edge.size(0)), action_logp_index, :]
selected_action_feature = neighboring_feature[torch.arange(neighboring_feature.size(0)), action_logp_index, :]
selected_action_feature = selected_action_feature.unsqueeze(1)
return action_logp, neighboring_feature, selected_action_index, selected_action_feature
def forward(self, node_inputs, edge_inputs, current_index, target_index, all_center_index, node_padding_mask=None, edge_padding_mask=None, edge_mask=None, center_mask=None):
enhanced_node_feature, enhanced_current_node_feature, selected_center_index, selected_center_feature, center_logp, center_node_features = self.graph_encoder_and_center_decoder(\
node_inputs, node_padding_mask, edge_mask, center_mask, all_center_index, target_index, current_index, edge_inputs)
action_logp, neighboring_features, selected_action_index, selected_action_feature = self.output_policy(enhanced_node_feature, enhanced_current_node_feature, edge_inputs, edge_padding_mask, selected_center_feature, node_padding_mask)
return center_logp, action_logp, \
selected_center_index, selected_action_index, \
center_node_features, neighboring_features, selected_center_feature, selected_action_feature
class QNet(nn.Module):
def __init__(self, input_dim, embedding_dim):
super(QNet, self).__init__()
self.initial_embedding = nn.Linear(input_dim, embedding_dim) # layer for non-end position
self.current_embedding1 = nn.Linear(embedding_dim * 2, embedding_dim)
self.current_embedding2 = nn.Linear(embedding_dim * 3, embedding_dim)
self.encoder = Encoder(embedding_dim=embedding_dim, n_head=8, n_layer=6)
self.target_node_decoder = Decoder(embedding_dim=embedding_dim, n_head=8, n_layer=1)
self.current_node_decoder2 = Decoder(embedding_dim=embedding_dim, n_head=8, n_layer=1)
self.pointer1 = SingleHeadAttention(embedding_dim)
self.pointer2 = SingleHeadAttention(embedding_dim)
self.neighbor_embedding = nn.Linear(embedding_dim * 2, embedding_dim)
self.q_values_layer1 = nn.Linear(embedding_dim * 2, 1)
self.q_values_layer2 = nn.Linear(embedding_dim * 2, 1)
def graph_encoder_and_center_decoder(self, node_inputs, node_padding_mask, edge_mask, optimal_center_index, center_index, target_index, current_index, edge_inputs):
# q encoder
node_feature = self.initial_embedding(node_inputs)
enhanced_node_feature = self.encoder(src=node_feature, key_padding_mask=node_padding_mask, attn_mask=edge_mask)
# decoder1 - select center
center_index = center_index.permute(0, 2, 1)
embedding_dim = enhanced_node_feature.size()[2]
target_node_feature = torch.gather(enhanced_node_feature, 1, target_index.repeat(1, 1, embedding_dim))
current_node_feature = torch.gather(enhanced_node_feature, 1, current_index.repeat(1, 1, embedding_dim))
center_node_features = torch.gather(enhanced_node_feature, 1, center_index.repeat(1, 1, embedding_dim))
enhanced_target_node_feature, attention_weights = self.target_node_decoder(target_node_feature, enhanced_node_feature, node_padding_mask)
embedding_target_node_feature = self.current_embedding1(torch.cat((enhanced_target_node_feature, target_node_feature), dim=-1))
center_feature = torch.cat((embedding_target_node_feature.repeat(1, LOCAL_K_SIZE, 1), center_node_features), dim=-1) # batch_size*k_size*embedding_dim
q_values = self.q_values_layer1(center_feature)
selected_center_index = torch.argmax(q_values, dim=1).long()
selected_center_node_feature = torch.gather(center_node_features, 1, selected_center_index.unsqueeze(1).repeat(1, 1, embedding_dim))
# print("selected_center_node_feature", selected_center_node_feature.size()) # batch_size*1*embedding_dim
return q_values, attention_weights, selected_center_index, selected_center_node_feature, enhanced_node_feature, current_node_feature
def output_q_values(self, enhanced_node_feature, current_node_feature, edge_inputs, edge_padding_mask, selected_center_feature, node_padding_mask):
# q decoder2 - select next move based on the selected center
k_size = edge_inputs.size()[2]
current_edge = edge_inputs
# current_edge = current_edge.permute(0, 2, 1)
embedding_dim = enhanced_node_feature.size()[2]
neigboring_feature = torch.gather(enhanced_node_feature, 1, current_edge.repeat(1, 1, embedding_dim))
enhanced_current_node_feature, attention_weights = self.current_node_decoder2(current_node_feature, enhanced_node_feature, node_padding_mask)
embedding_current_node_feature = self.current_embedding2(torch.cat((enhanced_current_node_feature, current_node_feature, selected_center_feature), dim=-1))
action_features = torch.cat((embedding_current_node_feature.repeat(1, LOCAL_K_SIZE, 1), neigboring_feature), dim=-1)
q_values = self.q_values_layer2(action_features)
# if edge_padding_mask is not None:
# current_mask = edge_padding_mask
# else:
# current_mask = None
# current_mask[:, :, 0] = 1 # don't stay at current position
# #assert 0 in current_mask
# current_mask = current_mask.permute(0, 2, 1)
# zero = torch.zeros_like(q_values).to(q_values.device)
# q_values = torch.where(current_mask == 1, zero, q_values)
return q_values, attention_weights
def forward(self, node_inputs, edge_inputs, current_index, optimal_center_index, center_index, target_index, node_padding_mask=None, edge_padding_mask=None, edge_mask=None, center_mask=None):
centers_q_values, attention_weights1, selected_center_index, selected_center_feature, enhanced_node_feature, current_node_feature = self.graph_encoder_and_center_decoder(\
node_inputs, node_padding_mask, edge_mask, optimal_center_index, center_index, target_index, current_index, edge_inputs)
action_q_values, attention_weights2 = self.output_q_values(enhanced_node_feature, current_node_feature, edge_inputs, edge_padding_mask, selected_center_feature, node_padding_mask)
return centers_q_values, attention_weights1, \
action_q_values, attention_weights2