-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquads.py
787 lines (672 loc) · 25.6 KB
/
quads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
import math
__author__ = "Daniel Lindsley"
__license__ = "New BSD"
__version__ = (1, 1, 0)
def euclidean_compare(ref_point, check_point):
"""
Calculates a raw euclidean value for comparison with other raw values.
This calculates the sum of the delta of X values plus the delta of Y
values. It skips the square root portion of the Pythagorean theorem,
for speed.
If you need a proper euclidean distance value, see `euclidean_distance`.
Primarily for internal use, but stable API if you need it.
Args:
ref_point (Point): The first point to check.
check_point (Point): The second point to check.
Returns:
int|float: The sum value.
"""
dx = max(ref_point.x, check_point.x) - min(ref_point.x, check_point.x)
dy = max(ref_point.y, check_point.y) - min(ref_point.y, check_point.y)
return dx ** 2 + dy ** 2
def euclidean_distance(ref_point, check_point):
"""
Calculates a euclidean distance between points.
Args:
ref_point (Point): The first point to check.
check_point (Point): The second point to check.
Returns:
int|float: The (unitless) distance value.
"""
return math.sqrt(euclidean_compare(ref_point, check_point))
def visualize(tree, size=10): # pragma: no cover
"""
Using `matplotlib`, generates a visualization of the `QuadTree`.
You will have to separately install `matplotlib`, as this library does
not depend on it in any other way::
$ pip install matplotlib
Once installed, this will automatically generate an entire plot of all
the points within, as well as lines for the subdivisions of nodes.
Args:
tree (`QuadTree`): The quadtree itself.
size (int): The size of the resulting output diagram.
"""
from matplotlib import pyplot
def draw_all_nodes(node):
for pnt in node.points:
pyplot.plot(pnt.x, pnt.y, ".")
if node.ul:
draw_lines(node)
draw_all_nodes(node.ul)
if node.ur:
draw_all_nodes(node.ur)
if node.ll:
draw_all_nodes(node.ll)
if node.lr:
draw_all_nodes(node.lr)
def draw_lines(node):
bb = node.bounding_box
# The scales for axhline & axvline are 0-1, so we have to convert
# our values.
x_offset = -tree._root.bounding_box.min_x
min_x = (bb.min_x + x_offset) / 100
max_x = (bb.max_x + x_offset) / 100
y_offset = -tree._root.bounding_box.min_y
min_y = (bb.min_y + y_offset) / 100
max_y = (bb.max_y + y_offset) / 100
pyplot.axhline(
node.center.y, min_x, max_x, color="grey", linewidth=0.5
)
pyplot.axvline(
node.center.x, min_y, max_y, color="grey", linewidth=0.5
)
pyplot.figure(figsize=(size, size))
# Draw the axis first.
half_width = tree.width / 2
half_height = tree.height / 2
min_x, max_x = tree.center.x - half_width, tree.center.x + half_width
min_y, max_y = (
tree.center.y - half_height,
tree.center.y + half_height,
)
pyplot.axis([min_x, max_x, min_y, max_y])
draw_all_nodes(tree._root)
pyplot.show()
class Point(object):
"""
An object representing X/Y cartesean coordinates.
"""
def __init__(self, x, y, data=None):
"""
Constructs a `Point` object.
Args:
x (int|float): The X coordinate.
y (int|float): The Y coordinate.
data (any): Optional. Corresponding data for that point. Default
is `None`.
"""
self.x = x
self.y = y
self.data = data
def __repr__(self):
return "<Point: ({}, {})>".format(self.x, self.y)
def __hash__(self):
return hash((self.x, self.y))
def __eq__(self, other):
"""
Checks if a point's *coordinates* are equal to another point's.
This does **NOT** ensure the data is the same. This library doesn't
concern itself with what data you're storing on the points.
Args:
other (Point): The other point to check against.
Returns:
bool: `True` if the coordinates match, otherwise `False`.
"""
return self.x == other.x and self.y == other.y
class BoundingBox(object):
"""
A object representing a bounding box.
"""
def __init__(self, min_x, min_y, max_x, max_y):
"""
Constructs a `Point` object.
Args:
min_x (int|float): The minimum X coordinate.
min_y (int|float): The minimum Y coordinate.
max_x (int|float): The maximum X coordinate.
max_y (int|float): The maximum Y coordinate.
"""
self.min_x = min_x
self.min_y = min_y
self.max_x = max_x
self.max_y = max_y
self.width = self.max_x - self.min_x
self.height = self.max_y - self.min_y
self.half_width = self.width / 2
self.half_height = self.height / 2
self.center = Point(self.half_width, self.half_height)
def __repr__(self):
return "<BoundingBox: ({}, {}) to ({}, {})>".format(
self.min_x, self.min_y, self.max_x, self.max_y
)
def contains(self, point):
"""
Checks if a point is within the bounding box.
Args:
point (Point): The point to check.
Returns:
bool: `True` if the point is within the box, otherwise `False`.
"""
return (
self.min_x <= point.x <= self.max_x
and self.min_y <= point.y <= self.max_y
)
def intersects(self, other_bb):
"""
Checks if another bounding box intersects with this bounding box.
Args:
other_bb (BoundingBox): The bounding box to check.
Returns:
bool: `True` if they intersect, otherwise `False`.
"""
return not (
other_bb.min_x > self.max_x
or other_bb.max_x < self.min_x
or other_bb.max_y < self.min_y
or other_bb.min_y > self.max_y
)
class QuadNode(object):
"""
A node within the QuadTree.
Typically, you won't use this object directly. The `QuadTree` object
provides a more convenient API. However, if you know what you're doing
or need to customize, `QuadNode` is here.
"""
POINT_CAPACITY = 4
point_class = Point
bb_class = BoundingBox
def __init__(self, center, width, height, capacity=None):
"""
Constructs a `QuadNode` object.
Args:
center (tuple|Point): The center point of the quadtree.
width (int|float): The width of the point space.
height (int|float): The height of the point space.
capacity (int): Optional. The number of points per quad before
subdivision occurs. Default is `None`, which defers to
`QuadNode.POINT_CAPACITY`, which is `4`.
"""
self.center = center
self.width = width
self.height = height
self.points = []
self.ul = None
self.ur = None
self.ll = None
self.lr = None
if capacity is None:
capacity = self.POINT_CAPACITY
self.capacity = capacity
self.bounding_box = self._calc_bounding_box()
def __repr__(self):
return "<QuadNode: ({}, {}) {}x{}>".format(
self.center.x, self.center.y, self.width, self.height
)
def __contains__(self, point):
"""
Checks if a point is found within the node's data.
Args:
point (Point): The point to check.
Returns:
bool: `True` if it found, otherwise `False`.
"""
return self.find(point) is not None
def __len__(self):
"""
Returns a count of how many points are in the node.
Returns:
int: A count of all the points.
"""
count = len(self.points)
if self.ul is not None:
count += len(self.ul)
if self.ur is not None:
count += len(self.ur)
if self.ll is not None:
count += len(self.ll)
if self.lr is not None:
count += len(self.lr)
return count
def __iter__(self):
"""
Iterates (lazily) over all the points located within a node &
its children.
Returns:
iterable: All the `Point` objects.
"""
# Make sure we slice it, so that we copy the whole list & don't
# risk modifying the original.
for pnt in self.points[:]:
yield pnt
if self.ul is not None:
yield from self.ul
if self.ur is not None:
yield from self.ur
if self.ll is not None:
yield from self.ll
if self.lr is not None:
yield from self.lr
def _calc_bounding_box(self):
half_width = self.width / 2
half_height = self.height / 2
min_x = self.center.x - half_width
min_y = self.center.y - half_height
max_x = self.center.x + half_width
max_y = self.center.y + half_height
return self.bb_class(
min_x=min_x, min_y=min_y, max_x=max_x, max_y=max_y
)
def contains_point(self, point):
"""
Checks if a point would be within the bounding box of the node.
This is a bounding check, not verification the point is present in
the data.
Args:
point (Point): The point to check.
Returns:
bool: `True` if it is within the bounds, otherwise `False`.
"""
bb = self.bounding_box
if bb.min_x <= point.x <= bb.max_x:
if bb.min_y <= point.y <= bb.max_y:
return True
return False
def is_ul(self, point):
"""
Checks if a point would be in the upper-left quadrant of the node.
This is a bounding check, not verification the point is present in
the data.
Args:
point (Point): The point to check.
Returns:
bool: `True` if it would be, otherwise `False`.
"""
return point.x < self.center.x and point.y >= self.center.y
def is_ur(self, point):
"""
Checks if a point would be in the upper-right quadrant of the node.
This is a bounding check, not verification the point is present in
the data.
Args:
point (Point): The point to check.
Returns:
bool: `True` if it would be, otherwise `False`.
"""
return point.x >= self.center.x and point.y >= self.center.y
def is_ll(self, point):
"""
Checks if a point would be in the lower-left quadrant of the node.
This is a bounding check, not verification the point is present in
the data.
Args:
point (Point): The point to check.
Returns:
bool: `True` if it would be, otherwise `False`.
"""
return point.x < self.center.x and point.y < self.center.y
def is_lr(self, point):
"""
Checks if a point would be in the lower-right quadrant of the node.
This is a bounding check, not verification the point is present in
the data.
Args:
point (Point): The point to check.
Returns:
bool: `True` if it would be, otherwise `False`.
"""
return point.x >= self.center.x and point.y < self.center.y
def subdivide(self):
"""
Subdivides an existing node into the node + children.
Returns:
None: Nothing to see here. Please go about your business.
"""
half_width = self.width / 2
half_height = self.height / 2
quarter_width = half_width / 2
quarter_height = half_height / 2
ul_center = self.point_class(
self.center.x - quarter_width, self.center.y + quarter_height
)
self.ul = self.__class__(
ul_center, half_width, half_height, capacity=self.capacity
)
ur_center = self.point_class(
self.center.x + quarter_width, self.center.y + quarter_height
)
self.ur = self.__class__(
ur_center, half_width, half_height, capacity=self.capacity
)
ll_center = self.point_class(
self.center.x - quarter_width, self.center.y - quarter_height
)
self.ll = self.__class__(
ll_center, half_width, half_height, capacity=self.capacity
)
lr_center = self.point_class(
self.center.x + quarter_width, self.center.y - quarter_height
)
self.lr = self.__class__(
lr_center, half_width, half_height, capacity=self.capacity
)
# Redistribute the points.
# Manually call `append` here, as calling `.insert()` creates an
# infinite recursion situation.
for pnt in self.points:
if self.is_ul(pnt):
self.ul.points.append(pnt)
elif self.is_ur(pnt):
self.ur.points.append(pnt)
elif self.is_ll(pnt):
self.ll.points.append(pnt)
else:
self.lr.points.append(pnt)
self.points = []
def insert(self, point):
"""
Inserts a `Point` into the node.
If the node exceeds the maximum capacity, it will subdivide itself
& redistribute its points before adding the new one. This means there
can be some variance in the performance of this method.
Args:
point (Point): The point to insert.
Returns:
bool: `True` if insertion succeeded, otherwise `False`.
"""
if not self.contains_point(point):
raise ValueError(
"Point {} is not within this node ({} - {}).".format(
point, self.center, self.bounding_box
)
)
# Check to ensure we're not going to go over capacity.
if (len(self.points) + 1) > self.capacity:
# We're over capacity. Subdivide, then insert into the new child.
self.subdivide()
if self.ul is not None:
if self.is_ul(point):
return self.ul.insert(point)
elif self.is_ur(point):
return self.ur.insert(point)
elif self.is_ll(point):
return self.ll.insert(point)
elif self.is_lr(point):
return self.lr.insert(point)
# There are no child nodes & we're under capacity. Add it to `points`.
self.points.append(point)
return True
def find(self, point):
"""
Searches for the node that would contain the `Point` within the
node & it's children.
Args:
point (Point): The point to search for.
Returns:
Point|None: Returns the `Point` (including it's data) if found.
`None` if the point is not found.
"""
found_node, _ = self.find_node(point)
if found_node is None:
return None
# Try the points on this node first.
for pnt in found_node.points:
if pnt.x == point.x and pnt.y == point.y:
return pnt
return None
def find_node(self, point, searched=None):
"""
Searches for the node that would contain the `Point` within the
node & it's children.
Args:
point (Point): The point to search for.
searched (list|None): Optional. This is a list of all the nodes
that were touched during the search. Default is `None`, which
will construct an empty `list` to pass to recursive calls.
Returns:
tuple: (QuadNode|None, list): Returns the node where the point
would be found or `None`, AND the list of nodes touched
during the search.
"""
if searched is None:
searched = []
if not self.contains_point(point):
return None, searched
searched.append(self)
# Check the children.
if self.is_ul(point):
if self.ul is not None:
return self.ul.find_node(point, searched)
elif self.is_ur(point):
if self.ur is not None:
return self.ur.find_node(point, searched)
elif self.is_ll(point):
if self.ll is not None:
return self.ll.find_node(point, searched)
elif self.is_lr(point):
if self.lr is not None:
return self.lr.find_node(point, searched)
# Not found in any children. Return this node.
return self, searched
def all_points(self):
"""
Returns a **list** of all the points located within a node &
its children.
Returns:
list: All the `Point` objects in an unordered list.
"""
return list(iter(self))
def within_bb(self, bb):
"""
Checks if a bounding box is within the node's bounding box.
Primarily for internal use, but stable API if you need it.
Args:
bb (BoundingBox): The bounding box to check.
Returns:
bool: `True` if the bounding boxes intersect, otherwise `False`.
"""
points = []
# If we don't intersect with the bounding box, return an empty list.
if not self.bounding_box.intersects(bb):
return points
# Check if any of the points on this instance are within the BB.
for pnt in self.points:
if bb.contains(pnt):
points.append(pnt)
if self.ul is not None:
points += self.ul.within_bb(bb)
if self.ur is not None:
points += self.ur.within_bb(bb)
if self.ll is not None:
points += self.ll.within_bb(bb)
if self.lr is not None:
points += self.lr.within_bb(bb)
return points
class QuadTree(object):
node_class = QuadNode
point_class = Point
def __init__(self, center, width, height, capacity=None):
"""
Constructs a `QuadTree` object.
Args:
center (tuple|Point): The center point of the quadtree.
width (int|float): The width of the point space.
height (int|float): The height of the point space.
capacity (int): Optional. The number of points per quad before
subdivision occurs. Default is `None`.
"""
self.width = width
self.height = height
self.center = self.convert_to_point(center)
self._root = self.node_class(
self.center, self.width, self.height, capacity=capacity
)
def __repr__(self):
return "<QuadTree: ({}, {}) {}x{}>".format(
self.center.x, self.center.y, self.width, self.height,
)
def convert_to_point(self, val):
"""
Converts a value to a `Point` object.
This is to allow shortcuts, like providing a tuple for a point.
Args:
val (Point|tuple|None): The value to convert.
Returns:
Point: A point object.
"""
if isinstance(val, self.point_class):
return val
elif isinstance(val, (tuple, list)):
return self.point_class(val[0], val[1])
elif val is None:
return self.point_class(0, 0)
else:
raise ValueError(
"Unknown data provided for point. Please use one of: "
"quads.Point | tuple | list | None"
)
def __contains__(self, point):
"""
Checks if a `Point` is found in the quadtree.
> Note: This doesn't check if a point is within the bounds of the
> tree, but if that *specific point* is in the tree.
Args:
point (Point|tuple|None): The point to check for.
Returns:
bool: `True` if found, otherwise `False`.
"""
pnt = self.convert_to_point(point)
return self.find(pnt) is not None
def __len__(self):
"""
Returns a count of how many points are in the tree.
Returns:
int: A count of all the points.
"""
return len(self._root)
def __iter__(self):
"""
Returns an iterator for all the points in the tree.
Returns:
iterator: An iterator of all the points.
"""
return iter(self._root)
def insert(self, point, data=None):
"""
Inserts a `Point` into the quadtree.
Args:
point (Point|tuple|None): The point to insert.
data (any): Optional. Corresponding data for that point. Default
is `None`.
Returns:
bool: `True` if insertion succeeded, otherwise `False`.
"""
pnt = self.convert_to_point(point)
pnt.data = data
return self._root.insert(pnt)
def find(self, point):
"""
Searches for a `Point` within the quadtree.
Args:
point (Point|tuple|None): The point to search for.
Returns:
Point|None: Returns the `Point` (including it's data) if found.
`None` if the point is not found.
"""
pnt = self.convert_to_point(point)
return self._root.find(pnt)
def within_bb(self, bb):
"""
Checks if a bounding box is within the quadtree's bounding box.
Primarily for internal use, but stable API if you need it.
Args:
bb (BoundingBox): The bounding box to check.
Returns:
bool: `True` if the bounding boxes intersect, otherwise `False`.
"""
return self._root.within_bb(bb)
def nearest_neighbors(self, point, count=10):
"""
Returns the nearest points of a given point, sorted by distance
(closest first).
The desired point does not need to exist within the quadtree, but
does need to be within the tree's boundaries.
Args:
point (Point): The desired location to search around.
count (int): Optional. The number of neighbors to return. Default
is `10`.
Returns:
list: The nearest `Point` neighbors.
"""
# Algorithm description:
# * Search down to find the smallest node around the desired point,
# retaining a stack of nodes visited on the way down.
# * Reverse the visited stack, so that it's now in
# smallest/closest-to-largest/furthest order.
# * Iterate over the node stack.
# * Collect the points from the current node & it's children.
# * Sort the points by euclidean distance, using
# `euclidean_compare`, since the actual distance doesn't matter
# for now.
# * Add them to the "found" results.
# * If the "found" count is greater-than-or-equal to the desired
# count, break out of the loop.
# * If the stack is exhausted, we have all the points in the entire
# quadtree & can just return them.
# * Otherwise, we now have a decent set of results, ordered by
# distance. But we are not done. It's possible/probable that there
# are other nearby quadnodes that weren't touched by the search
# BUT are physically closer.
# * Take our furthest point and use it as a radius for a search
# "circle".
# * We'll actually just create a bounding box, which is
# computationally cheaper & we already have methods that
# support it.
# * Using that radius as a distance to the *edge* (not a corner),
# we create a box big enough to fit the search circle.
# * Collect all the points within that bounding box.
# * Re-sort them by euclidean distance (again, using
# `euclidean_compare`).
# * Slice it to match the desired count & return them.
point = self.convert_to_point(point)
nearest_results = []
# Check to see if it's within our bounds first.
if not self._root.contains_point(point):
return nearest_results
# First, find the target node.
node, searched_nodes = self._root.find_node(point)
# Reverse the order, as they come back in coarse-to-fine order, which
# is the opposite of nearby points.
searched_nodes.reverse()
seen_nodes = set()
seen_points = set()
# From here, we'll work our way backwards out through the nodes.
for node in searched_nodes:
# Mark the node as already checked.
seen_nodes.add(node)
local_points = []
for pnt in node.all_points():
if pnt in seen_points:
continue
seen_points.add(pnt)
local_points.append(pnt)
local_points = sorted(
local_points, key=lambda lpnt: euclidean_compare(point, lpnt)
)
nearest_results.extend(local_points)
if len(nearest_results) >= count:
break
# Slice off any extras.
nearest_results = nearest_results[:count]
if len(seen_nodes) == len(searched_nodes):
# We've exhausted everything. Return what we've got.
return nearest_results[:count]
search_radius = euclidean_distance(point, nearest_results[-1])
search_bb = BoundingBox(
point.x - search_radius,
point.y - search_radius,
point.x + search_radius,
point.y + search_radius,
)
bb_results = self._root.within_bb(search_bb)
nearest_results = sorted(bb_results, key=lambda lpnt: euclidean_compare(point, lpnt))
return nearest_results[:count]