-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
53 lines (39 loc) · 1.74 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import ray
from model import PolicyNet
from worker import Worker
from parameter import *
class Runner(object):
def __init__(self, meta_agent_id):
self.meta_agent_id = meta_agent_id
self.device = torch.device('cuda') if USE_GPU else torch.device('cpu')
self.local_network = PolicyNet(LOCAL_NODE_INPUT_DIM, EMBEDDING_DIM)
self.local_network.to(self.device)
def get_weights(self):
return self.local_network.state_dict()
def set_policy_net_weights(self, weights):
self.local_network.load_state_dict(weights)
def do_job(self, episode_number):
save_img = True if episode_number >= 500 and episode_number % SAVE_IMG_GAP == 0 else False
worker = Worker(self.meta_agent_id, self.local_network, episode_number, device=self.device, save_image=save_img)
worker.run_episode()
job_results = worker.episode_buffer
perf_metrics = worker.perf_metrics
return job_results, perf_metrics
def job(self, weights_set, episode_number):
print("starting episode {} on metaAgent {}".format(episode_number, self.meta_agent_id))
# set the local weights to the global weight values from the master network
self.set_policy_net_weights(weights_set[0])
job_results, metrics = self.do_job(episode_number)
info = {"id": self.meta_agent_id, "episode_number": episode_number}
return job_results, metrics, info
@ray.remote(num_cpus=1, num_gpus=NUM_GPU / NUM_META_AGENT)
class RLRunner(Runner):
def __init__(self, meta_agent_id):
super().__init__(meta_agent_id)
if __name__ == '__main__':
ray.init()
runner = RLRunner.remote(0)
job_id = runner.do_job.remote(1)
out = ray.get(job_id)
print(out[1])