-
Notifications
You must be signed in to change notification settings - Fork 3
/
4_flat_atria.py
317 lines (280 loc) · 16.8 KB
/
4_flat_atria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Copyright (c) - Marta Nunez Garcia
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.
"""
"""
Implementation of left atrial (LA) flattening in "Fast quasi-conformal regional flattening of the left atrium", Nunez-Garcia, Marta, et al., 2018, arXiv preprint arXiv:1811.06896
Input: LA mesh with clipped & filled holes (PVs, LAA) and only 1 hole corresponding to MV.
Output: Flat (2D) version of input mesh.
Usage: python 4_flat_atria.py --meshfile data/mesh_clipped_c.vtk
Conformal flattening considering 6 boundaries (4 PVs + LAA + MV) and additional regional constraints
Regional constraints fitted using segments: s1,s2,s3,s4,s5,s6,s7, s8a and s8b
Boundaries fitted using segments: s9, s10, s11, s12, rspv_s{1,2,3}, ripv_s{1,2,3}, lipv_s{1,2,3}, lspv_s{1,2,3}, laa_s{1,2}
Constraints (division lines) are modified to enforce proportional distribution of points in the holes.
"""
from aux_functions import *
import numpy as np
import matplotlib.pyplot as plt
import sys
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--meshfile', type=str, metavar='PATH', help='path to input mesh')
parser.add_argument('--save_conts', type=bool, default=False, help='set to true to save mesh contours/contraints')
parser.add_argument('--save_final_paths', type=bool, default=False, help='set to true to save modified dividing paths')
args = parser.parse_args()
if os.path.isfile(args.meshfile)==False:
sys.exit('ERROR: input file does not exist')
else:
mesh = readvtk(args.meshfile)
seeds_filename = args.meshfile[0:len(args.meshfile)-4] + '_seeds_for_flat.vtk'
if os.path.isfile(seeds_filename)==False:
sys.exit('ERROR: input file containing seeds for flat does not exist. Create it using: 3_divide_LA.py')
else:
m_seeds = readvtk(seeds_filename)
to_be_flat_filename = args.meshfile[0:len(args.meshfile)-4] + '_to_be_flat.vtk'
m_out = args.meshfile[0:len(args.meshfile) - 4] + '_flat.vtk'
################## Template creation. Define position and radius of PV holes, and radius disk. Adapt to input mesh. ##################
rdisk = 0.5
pv_centers = np.zeros([2, 4])
r_min = 0.03
rhole_lipv = r_min
rhole_lspv = 1.1*r_min
rhole_ripv = 1.1*r_min
rhole_rspv = 1.35*r_min
rhole_laa = 1.35*r_min
laa_disp_x = 0.03 # displacement of LAA wrt LSPV (in x direction, to the left)
px_ref = -0.25
py_ref = -0.10
left_carina_length = 0.175
right_carina_length = 1.1 * left_carina_length # real proportions, do not separate more, it induces distortion close to the holes
pwall_width = 2.6 * left_carina_length
sep_lspv_laa = 1.2
t_v5 = np.pi / 8
t_v6 = 2*np.pi - np.pi/6
t_v7 = np.pi + np.pi / 6
t_v8 = 3 * np.pi / 4 - np.pi/40
# rspv
pv_centers[0, 0] = px_ref + pwall_width
pv_centers[1, 0] = py_ref + left_carina_length + (right_carina_length - left_carina_length) / 2
# ripv
pv_centers[0, 1] = px_ref + pwall_width
pv_centers[1, 1] = py_ref - (right_carina_length - left_carina_length) / 2
# lipv
pv_centers[0, 2] = px_ref
pv_centers[1, 2] = py_ref
# lspv
pv_centers[0, 3] = px_ref
pv_centers[1, 3] = py_ref + left_carina_length
# LAA
laa_hole_center_x = px_ref - laa_disp_x
laa_hole_center_y = py_ref + left_carina_length + left_carina_length * sep_lspv_laa # si lipv esta en (-.25, -.10)
xhole_center = pv_centers[0, :]
yhole_center = pv_centers[1, :]
# define the proportion of points in each of the PV segments
alpha = np.arctan(np.divide(laa_disp_x, laa_hole_center_y - pv_centers[1, 3])) # angle of the line connecting LSPV and LAA
proportions = define_pv_segments_proportions(t_v5, t_v6, t_v7, alpha)
propn_rspv_s1, propn_rspv_s2, propn_rspv_s3 = proportions[0, :]
propn_ripv_s1, propn_ripv_s2, propn_ripv_s3 = proportions[1, :]
propn_lipv_s1, propn_lipv_s2, propn_lipv_s3 = proportions[2, :]
propn_lspv_s1, propn_lspv_s2, propn_lspv_s3 = proportions[3, :]
v5 = m_seeds.GetPoint(5) # Seeds in the MV
v6 = m_seeds.GetPoint(6)
v7 = m_seeds.GetPoint(7)
v8 = m_seeds.GetPoint(8)
# define target coordinates in the disk and get them separated
coordinates = define_disk_template(rdisk, rhole_rspv, rhole_ripv, rhole_lipv, rhole_lspv, rhole_laa, xhole_center, yhole_center,laa_hole_center_x, laa_hole_center_y, t_v5, t_v6, t_v7, t_v8)
v1r_x, v1r_y, v1d_x, v1d_y, v1l_x, v1l_y, v2u_x, v2u_y, v2r_x, v2r_y, v2l_x, v2l_y, v3u_x, v3u_y, v3r_x, v3r_y, v3l_x, v3l_y, v4r_x, v4r_y, v4u_x, v4u_y, v4d_x, v4d_y, vlaad_x, vlaad_y, vlaau_x, vlaau_y, p5_x, p5_y, p6_x, p6_y, p7_x, p7_y, p8_x, p8_y = get_coords(coordinates)
################## Open PVs and LAA holes (get 'to_be_flat_mesh'), identify contours and dividing paths in the to_be_flat mesh ##################
m_open = cleanpolydata(pointthreshold(mesh, 'hole', 0, 0))
writevtk(m_open, to_be_flat_filename)
# contours
cont_rspv, cont_ripv, cont_lipv, cont_lspv, cont_mv, cont_laa = extract_LA_contours(m_open, args.meshfile, args.save_conts)
locator, locator_open, locator_rspv, locator_ripv, locator_lipv, locator_lspv, locator_laa = build_locators(mesh, m_open, cont_rspv, cont_ripv, cont_lipv, cont_lspv, cont_laa)
mv_cont_ids = get_mv_contour_ids(cont_mv, locator_open)
# paths (created with 3_divide_LA.py)
npaths = 7
path1, path2, path3, path4, path5, path6, path7, path_laa1, path_laa2, path_laa3 = read_paths(args.meshfile, 7)
# Obtain ids corresponding to the extremes of the segments
v1r, v1d, v1l, v2u, v2r, v2l, v3u, v3r, v3l, v4r, v4u, v4d, vlaad, vlaau, vlaar, id_v5, id_v6, id_v7, id_v8 = identify_segments_extremes(path1, path2, path3, path4, path5, path6, path7, path_laa1, path_laa2, path_laa3,
locator_open, locator_rspv, locator_ripv, locator_lipv, locator_lspv, locator_laa,
cont_rspv, cont_ripv, cont_lipv, cont_lspv, cont_laa,
v5, v6, v7, v8)
# Get ids of the segments. Start with PV holes. Start with angle = 0 or pi (anticlock-wise, positive angle direction)
rspv_ids, rspv_s1_prop, rspv_s2_prop, rspv_s3_prop, v1l_prop, v1d_prop, v1r_prop = get_rspv_segments_ids(cont_rspv, locator_open, v1l, v1d, v1r, propn_rspv_s1, propn_rspv_s2, propn_rspv_s3)
ripv_ids, ripv_s1_prop, ripv_s2_prop, ripv_s3_prop, v2l_prop, v2r_prop, v2u_prop = get_ripv_segments_ids(cont_ripv, locator_open, v2l, v2r, v2u, propn_ripv_s1, propn_ripv_s2, propn_ripv_s3)
lipv_ids, lipv_s1_prop, lipv_s2_prop, lipv_s3_prop, v3r_prop, v3u_prop, v3l_prop = get_lipv_segments_ids(cont_lipv, locator_open, v3r, v3u, v3l, propn_lipv_s1, propn_lipv_s2, propn_lipv_s3)
lspv_ids, lspv_s1_prop, lspv_s2_prop, lspv_s3_prop, v4r_prop, v4u_prop, v4d_prop = get_lspv_segments_ids(cont_lspv, locator_open, v4r, v4u, v4d, propn_lspv_s1, propn_lspv_s2, propn_lspv_s3)
laa_ids, laa_s1, laa_s2 = get_laa_segments_ids(cont_laa, locator_open, vlaau, vlaad, vlaar)
# write updated paths after displacing segment extremes to have proportional PV segments lengths
path1_clipped_prop = find_create_path(m_open, int(v2u_prop), int(v1d_prop)) # Always second to first to get order ids order from first to second
path2_clipped_prop = find_create_path(m_open, int(v3r_prop), int(v2l_prop))
path3_clipped_prop = find_create_path(m_open, int(v4d_prop), int(v3u_prop))
path4_clipped_prop = find_create_path(m_open, int(v1l_prop), int(v4r_prop))
path5_clipped_prop = find_create_path(m_open, int(id_v5), int(v1r_prop))
path6_clipped_prop = find_create_path(m_open, int(id_v6), int(v2r_prop))
path7_clipped_prop = find_create_path(m_open, int(id_v7), int(v3l_prop))
path_laa1_clipped_prop = find_create_path(m_open, int(vlaad), int(v4u_prop))
path_laa2_clipped_prop = find_create_path(m_open, int(id_v8), int(vlaau))
if args.save_final_paths == True:
writevtk(path1_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path1_prop.vtk')
writevtk(path2_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path2_prop.vtk')
writevtk(path3_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path3_prop.vtk')
writevtk(path4_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path4_prop.vtk')
writevtk(path5_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path5_prop.vtk')
writevtk(path6_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path6_prop.vtk')
writevtk(path7_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path7_prop.vtk')
writevtk(path_laa1_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path_laa1_prop.vtk')
writevtk(path_laa2_clipped_prop, args.meshfile[0:len(args.meshfile)-4] + 'path_laa2_prop.vtk')
################## Define segment constraint points (s1, s2, s3,..., s12) ##################
s1 = get_segment_ids_in_to_be_flat_mesh(path1_clipped_prop, locator_open, np.concatenate([ripv_s2_prop, ripv_s3_prop]), np.concatenate([rspv_s1_prop, rspv_s2_prop]))
s2 = get_segment_ids_in_to_be_flat_mesh(path2_clipped_prop, locator_open, np.concatenate([lipv_s1_prop, lipv_s3_prop]), np.concatenate([ripv_s1_prop, ripv_s3_prop]))
s3 = get_segment_ids_in_to_be_flat_mesh(path3_clipped_prop, locator_open, np.concatenate([lspv_s2_prop, lspv_s3_prop]), np.concatenate([lipv_s1_prop, lipv_s2_prop]))
s4 = get_segment_ids_in_to_be_flat_mesh(path4_clipped_prop, locator_open, np.concatenate([rspv_s1_prop, rspv_s3_prop]), np.concatenate([lspv_s1_prop, lspv_s3_prop]))
s5 = get_segment_ids_in_to_be_flat_mesh(path5_clipped_prop, locator_open, mv_cont_ids, np.concatenate([rspv_s2_prop, rspv_s3_prop]))
s6 = get_segment_ids_in_to_be_flat_mesh(path6_clipped_prop, locator_open, mv_cont_ids, np.concatenate([ripv_s1_prop, ripv_s2_prop]))
s7 = get_segment_ids_in_to_be_flat_mesh(path7_clipped_prop, locator_open, mv_cont_ids, np.concatenate([lipv_s2_prop, lipv_s3_prop]))
s8a = get_segment_ids_in_to_be_flat_mesh(path_laa1_clipped_prop, locator_open, np.concatenate([laa_s1, laa_s2]), np.concatenate([lspv_s1_prop, lspv_s2_prop]))
s8b = get_segment_ids_in_to_be_flat_mesh(path_laa2_clipped_prop, locator_open, mv_cont_ids, np.concatenate([laa_s1, laa_s2]))
# Last 5 segments, parts of the MV that will go to the contour of the disk. Is the MV contour ids list clockwise or anticlockwise? reorder to start in v5
pos_mv_v5 = int(np.where(mv_cont_ids.astype(int) == id_v5)[0])
mv_ids = np.append(mv_cont_ids[pos_mv_v5:mv_cont_ids.size], mv_cont_ids[0:pos_mv_v5])
pos_mv_v6 = int(np.where(mv_ids.astype(int) == id_v6)[0])
pos_mv_v7 = int(np.where(mv_ids.astype(int) == id_v7)[0])
pos_mv_v8 = int(np.where(mv_ids.astype(int) == id_v8)[0])
# which one comes first?
if pos_mv_v6 < pos_mv_v8:
# print('MV contour - clockwise direction')
mv_ids = mv_ids.astype(int)
else:
# print('MV contour - anti-clockwise direction, flipped required')
# manual flip because numpy flip is not working
aux = np.zeros(mv_ids.size)
for i in range(mv_ids.size):
aux[mv_ids.size-1-i] = mv_ids[i]
# mantain the id_v5 as the first one (after the flip is the last one)
flipped = np.append(aux[aux.size-1], aux[0:aux.size-1])
mv_ids = flipped.astype(int)
s9 = mv_ids[0:int(np.where(mv_ids == id_v6)[0])] # from v5 to v6 (points in the MV contour) skipping last one
s10 = mv_ids[int(np.where(mv_ids == id_v6)[0]):int(np.where(mv_ids == id_v7)[0])]
s11 = mv_ids[int(np.where(mv_ids == id_v7)[0]):int(np.where(mv_ids == id_v8)[0])]
s12 = mv_ids[int(np.where(mv_ids == id_v8)[0]):mv_ids.size]
# Concatenate all constraint segments: s1,s2,s3,s4,s5,s6,s7, s8a and s8b
auxx = np.append(s1, s2)
auxx = np.append(auxx, s3)
auxx = np.append(auxx, s4)
auxx = np.append(auxx, s5)
auxx = np.append(auxx, s6)
auxx = np.append(auxx, s7)
auxx = np.append(auxx, s8a)
seq_constraints_ids = np.append(auxx, s8b).astype(int)
################## Define contour constraint points ##################
# Concatenate ids of the contour segments: 3 in each veins (PV hole) + 4 external disk + 2 for LAA
auxx2 = np.append(s9, s10)
auxx2 = np.append(auxx2, s11)
auxx2 = np.append(auxx2, s12)
auxx2 = np.append(auxx2, rspv_s1_prop)
auxx2 = np.append(auxx2, rspv_s2_prop)
auxx2 = np.append(auxx2, rspv_s3_prop)
auxx2 = np.append(auxx2, ripv_s1_prop)
auxx2 = np.append(auxx2, ripv_s2_prop)
auxx2 = np.append(auxx2, ripv_s3_prop)
auxx2 = np.append(auxx2, lipv_s1_prop)
auxx2 = np.append(auxx2, lipv_s2_prop)
auxx2 = np.append(auxx2, lipv_s3_prop)
auxx2 = np.append(auxx2, lspv_s1_prop)
auxx2 = np.append(auxx2, lspv_s2_prop)
auxx2 = np.append(auxx2, lspv_s3_prop)
auxx2 = np.append(auxx2, laa_s1)
seq_contour_ids = np.append(auxx2, laa_s2).astype(int)
# # check repeated points -> singular matrix and no solution
# counts1 = np.bincount(seq_constraints_ids)
# counts2 = np.bincount(seq_contour_ids)
# counts3 = np.bincount(np.concatenate([seq_constraints_ids, seq_contour_ids]))
# print('Number of repeated constraints', np.where(counts1 > 1)[0])
# print('Number of repeated contour conditions', np.where(counts2 > 1)[0])
# print('Number of repeated constraints and conditions', np.where(counts3 > 1)[0])
# put together all PV and LAA segment sizes
pv_laa_segment_lengths = np.zeros([5, 3])
pv_laa_segment_lengths[0, 0] = rspv_s1_prop.size
pv_laa_segment_lengths[0, 1] = rspv_s2_prop.size
pv_laa_segment_lengths[0, 2] = rspv_s3_prop.size
pv_laa_segment_lengths[1, 0] = ripv_s1_prop.size
pv_laa_segment_lengths[1, 1] = ripv_s2_prop.size
pv_laa_segment_lengths[1, 2] = ripv_s3_prop.size
pv_laa_segment_lengths[2, 0] = lipv_s1_prop.size
pv_laa_segment_lengths[2, 1] = lipv_s2_prop.size
pv_laa_segment_lengths[2, 2] = lipv_s3_prop.size
pv_laa_segment_lengths[3, 0] = lspv_s1_prop.size
pv_laa_segment_lengths[3, 1] = lspv_s2_prop.size
pv_laa_segment_lengths[3, 2] = lspv_s3_prop.size
pv_laa_segment_lengths[4, 0] = laa_s1.size
pv_laa_segment_lengths[4, 1] = laa_s2.size
s9size = s9.size
s10size = s10.size
s11size = s11.size
s12size = s12.size
################## Create target (x0, y0) positions according to the lengths of each segment ##################
# Separately constraints and contours
x0_const, y0_const = define_constraints_positions(s1, s2, s3, s4, s5, s6, s7, s8a, s8b, v1l_x, v1l_y, v1d_x, v1d_y, v1r_x, v1r_y, v2l_x,
v2l_y, v2r_x, v2r_y, v2u_x, v2u_y, v3r_x, v3r_y, v3u_x, v3u_y, v3l_x, v3l_y,
v4r_x, v4r_y, v4u_x, v4u_y, v4d_x, v4d_y, vlaad_x, vlaad_y, vlaau_x, vlaau_y, p5_x,
p5_y, p6_x, p6_y, p7_x, p7_y, p8_x, p8_y)
x0_bound, y0_bound = define_boundary_positions(rdisk, rhole_rspv, rhole_ripv, rhole_lipv, rhole_lspv, rhole_laa, xhole_center, yhole_center, laa_hole_center_x, laa_hole_center_y, s9size, s10size, s11size, s12size, pv_laa_segment_lengths.astype(int), t_v5, t_v6, t_v7, t_v8)
plt.plot(x0_bound, y0_bound, 'ro')
plt.plot(x0_const, y0_const, 'bx')
plt.title('2D template with boundary (red) and regional (blue) constraint points')
plt.show()
m_flat = flat_w_constraints(m_open, seq_contour_ids.astype(int), seq_constraints_ids.astype(int), x0_bound, y0_bound, x0_const, y0_const)
m_final = flat(m_flat, seq_contour_ids.astype(int), x0_bound, y0_bound) # Refine boundary
# Add region (R1, R2, R3, R4, R5) label to the _to_be_flat mesh and the final flat mesh
# summarize and write all dividing lines in a txt file
line_textfile = args.meshfile[0:len(args.meshfile)-4] + '_div_lines.txt'
nlines = 9
locator = vtk.vtkPointLocator()
locator.SetDataSet(m_open)
locator.BuildLocator()
f = open(line_textfile, 'w')
for i in range(1, nlines+1):
if i == 1:
path = path1_clipped_prop
elif i == 2:
path = path2_clipped_prop
elif i == 3:
path = path3_clipped_prop
elif i == 4:
path = path4_clipped_prop
elif i == 5:
path = path5_clipped_prop
elif i == 6:
path = path6_clipped_prop
elif i == 7:
path = path7_clipped_prop
elif i == 8:
path = path_laa1_clipped_prop
elif i == 9:
path = path_laa2_clipped_prop
ids = np.arange(0, path.GetNumberOfPoints())
for p in range(path.GetNumberOfPoints()):
id_p = locator.FindClosestPoint(path.GetPoint(ids[p]))
f.write(str(id_p))
f.write(' ')
f.write('\n')
f.close()
# Read all lines and divide/cut mesh
m_aux = set_piece_label(m_open, line_textfile, m_seeds)
writevtk(m_aux, to_be_flat_filename)
print('\nProjecting information...')
transfer_all_scalar_arrays_by_point_id(m_open, m_final)
m_final.GetCellData().AddArray(m_aux.GetCellData().GetArray('region'))
# remove ad hoc scalar arrays
m_final.GetPointData().RemoveArray('pv')
m_final.GetPointData().RemoveArray('autolabels')
m_final.GetPointData().RemoveArray('hole')
print('\nRemoving ad hoc scalar arrays: autolabels, pv, and hole')
writevtk(m_final, m_out)