
Goals for future from last year

1 Finish Scaling up. I want a kilonode program.

2 Native learning reductions. Just like more complicated losses.

3 Other learning algorithms, as interest dictates.

4 Persistent Demonization
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Some design considerations

Hadoop compatibility: Widely available, scheduling and
robustness

Iteration-firendly: Lots of iterative learning algorithms exist

Minimum code overhead: Don’t want to rewrite learning
algorithms from scratch

Balance communication/computation: Imbalance on either
side hurts the system

Scalable: John has nodes aplenty
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Current system provisions

Hadoop-compatible AllReduce

Various parameter averaging routines

Parallel implementation of Adaptive GD, CG, L-BFGS

Robustness and scalability tested up to 1K nodes and
thousands of node hours



Basic invocation on single machine

./spanning tree

../vw --total 2 --node 0 --unique id 0 -d $1

--span server localhost > node 0 2>&1 &

../vw --total 2 --node 1 --unique id 0 -d $1

--span server localhost

killall spanning tree



Command-line options

--span server <arg>: Location of server for setting up
spanning tree

--unique id <arg> (=0): Unique id for cluster parallel job

--total <arg> (=1): Total number of nodes used in
cluster parallel job

--node <arg> (=0): Node id in cluster parallel job



Basic invocation on a non-Hadoop cluster

Spanning-tree server: Runs on cluster gateway, organizes
communication

./spanning tree

Worker nodes: Each worker node runs VW

./vw --span server <location> --total <t> --node
<n> --unique id <u> -d <file>

is the host running the spanning tree server
is the total number of mappers
is the node id number //To be set manually for

non-Hadoop cluster

is a number shared by all nodes in a process //To be set

manually for non-Hadoop cluster

is the input source file for that node



Basic invocation in a Hadoop cluster

Spanning-tree server: Runs on cluster gateway, organizes
communication

./spanning tree

Map-only jobs: Map-only job launched on each node using
Hadoop streaming

hadoop jar $HADOOP HOME/hadoop-streaming.jar
-Dmapred.job.map.memory.mb=2500 -input <input>
-output <output> -file vw -file runvw.sh -mapper
´runvw.sh <output> <span server>´ -reducer NONE

Each mapper runs VW
Model stored in <output>/model on HDFS
runvw.sh calls VW, used to modify VW arguments



mapscript.sh example

//Hadoop-streaming has no specification for number of mappers,
we calculate it indirectly

total=<total data size>

mapsize=`expr $total / $nmappers`

maprem=`expr $total % $nmappers`

mapsize=`expr $mapsize + $maprem`

./spanning tree //Starting span-tree server on the gateway
//Note the argument min.split.size to specify number of mappers

hadoop jar $HADOOP HOME/hadoop-streaming.jar

-Dmapred.min.split.size=$mapsize

-Dmapred.map.tasks.speculative.execution=true -input

$in directory -output $out directory -file ../vw -file

runvw.sh -mapper runvw.sh -reducer NONE



Communication and computation

Two main additions in cluster-parallel code:

Hadoop-compatible AllReduce communication
New and old optimization algorithms modified for AllReduce



Communication protocol

Spanning-tree server runs as daemon and listens for
connections

Workers via TCP with a node-id and job-id

Two workers with same job-id and node-id are duplicates,
faster one kept (speculative execution)

Available as mapper environment variables in Hadoop

mapper=`printenv mapred task id | cut -d " " -f 5`

mapred job id=`echo $mapred job id | tr -d ´job ´`



Communication protocol contd.

Each worker connects to spanning-tree sever

Server creates a spanning tree on the n nodes, communicates
parent and children to each node

Node connects to parent and children via TCP

AllReduce run on the spanning tree



AllReduce

Every node begins with a number (vector)

Every node ends up with the sum
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Extends to other functions: max, average, gather, . . .
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AllReduce Examples

Counting: n = allreduce(1)

Average: avg = allreduce(ni)/allreduce(1)

Non-uniform averaging: weighted avg =

allreduce(niwi)/allreduce(wi)

Gather: node array = allreduce({0, 0, . . . , 1︸︷︷︸
i

, . . . , 0})

Current code provides 3 routines:

accumulate(<params>): Computes vector sums
accumulate scalar(<params>): Computes scalar sums
accumulate avg(<params>): Computes weighted and
unweighted averages
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Machine learning with AllReduce

Previously: Single node SGD, multiple passes over data

Parallel: Each node runs SGD, averages parameters after
every pass (or more often!)

Code change:
if(global.span server != "") {

if(global.adaptive)

accumulate weighted avg(global.span server,

params->reg);

else

accumulate avg(global.span server,

params->reg, 0);

}
Weighted averages computed for adaptive updates, weight
features differently



Machine learning with AllReduce contd.

L-BFGS requires gradients and loss values

One call to AllReduce for each

Parallel synchronized L-BFGS updates

Same with CG, another AllReduce operation for Hessian

Extends to many other common algorithms



Communication and computation

Two main additions in cluster-parallel code:

Hadoop-compatible AllReduce communication
New and old optimization algorithms modified for AllReduce



Hybrid optimization for rapid convergence

SGD converges fast initially, but slow to squeeze the final bit
of precision

L-BFGS converges rapidly towards the end, once in a good
region
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Hybrid optimization for rapid convergence

SGD converges fast initially, but slow to squeeze the final bit
of precision

L-BFGS converges rapidly towards the end, once in a good
region

Each node performs few local SGD iterations, averaging after
every pass

Switch to L-BFGS with synchronized iterations using
AllReduce

Two calls to VW



Speedup

Near linear speedup
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Hadoop helps

Näıve implementation driven by slow node

Speculative execution ameliorates the problem

Table: Distribution of computing time (in seconds) over 1000 nodes.
First three columns are quantiles. The first row is without speculative
execution while the second row is with speculative execution.

5% 50% 95% Max Comm. time

Without spec. exec. 29 34 60 758 26
With spec. exec. 29 33 49 63 10



Fast convergence

auPRC curves for two tasks, higher is better
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Conclusions

AllReduce quite general yet easy for machine learning

Marriage with Hadoop great for robustness

Hybrid optimization strategies effective for rapid convergence

John gets his kilonode program


