Goals for future from last year

- Finish Scaling up. I want a kilonode program.
- Native learning reductions. Just like more complicated losses.
- Other learning algorithms, as interest dictates.
- Persistent Demonization

Goals for future from last year

• Finish Scaling up. I want a kilonode program.

Some design considerations

- Hadoop compatibility: Widely available, scheduling and robustness
- Iteration-firendly: Lots of iterative learning algorithms exist
- Minimum code overhead: Don't want to rewrite learning algorithms from scratch
- Balance communication/computation: Imbalance on either side hurts the system

Some design considerations

- Hadoop compatibility: Widely available, scheduling and robustness
- Iteration-firendly: Lots of iterative learning algorithms exist
- Minimum code overhead: Don't want to rewrite learning algorithms from scratch
- Balance communication/computation: Imbalance on either side hurts the system
- Scalable: John has nodes aplenty

Current system provisions

- Hadoop-compatible AllReduce
- Various parameter averaging routines
- Parallel implementation of Adaptive GD, CG, L-BFGS
- Robustness and scalability tested up to 1K nodes and thousands of node hours

Basic invocation on single machine

```
./spanning_tree
../vw --total 2 --node 0 --unique_id 0 -d $1
--span_server localhost > node_0 2>&1 &
../vw --total 2 --node 1 --unique_id 0 -d $1
--span_server localhost
killall spanning_tree
```

Command-line options

- --span_server <arg>: Location of server for setting up spanning tree
- --unique_id <arg> (=0): Unique id for cluster parallel job
- --total <arg> (=1): Total number of nodes used in cluster parallel job
- --node <arg> (=0): Node id in cluster parallel job

Basic invocation on a non-Hadoop cluster

Spanning-tree server: Runs on cluster gateway, organizes communication

```
./spanning_tree
```

Worker nodes: Each worker node runs VW

```
./vw --span_server <location> --total <t> --node
<n> --unique_id <u> -d <file>
```

Basic invocation in a Hadoop cluster

- Spanning-tree server: Runs on cluster gateway, organizes communication
 - ./spanning_tree
- Map-only jobs: Map-only job launched on each node using Hadoop streaming

```
hadoop jar $HADOOP_HOME/hadoop-streaming.jar
-Dmapred.job.map.memory.mb=2500 -input <input>
-output <output> -file vw -file runvw.sh -mapper
'runvw.sh <output> <span_server> -reducer NONE
```

- Each mapper runs VW
- Model stored in <output>/model on HDFS
- runvw.sh calls VW, used to modify VW arguments

mapscript.sh example

```
//Hadoop-streaming has no specification for number of mappers,
we calculate it indirectly
total=<total data size>
mapsize=`expr $total / $nmappers`
maprem=`expr $total % $nmappers`
mapsize=`expr $mapsize + $maprem`
./spanning_tree //Starting span-tree server on the gateway
//Note the argument min.split.size to specify number of mappers
hadoop jar $HADOOP_HOME/hadoop-streaming.jar
-Dmapred.min.split.size=$mapsize
-Dmapred.map.tasks.speculative.execution=true -input
$in_directory -output $out_directory -file ../vw -file
runvw.sh -mapper runvw.sh -reducer NONE
```

Communication and computation

- Two main additions in cluster-parallel code:
 - Hadoop-compatible AllReduce communication
 - New and old optimization algorithms modified for AllReduce

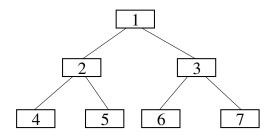
Communication protocol

- Spanning-tree server runs as daemon and listens for connections
- Workers via TCP with a node-id and job-id
- Two workers with same job-id and node-id are duplicates, faster one kept (speculative execution)
- Available as mapper environment variables in Hadoop
 - mapper=`printenv mapred_task_id | cut -d "_" -f 5`
 - mapred_job_id=`echo \$mapred_job_id | tr -d 'job_'`

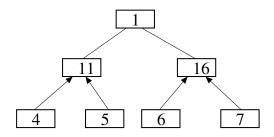
Communication protocol contd.

- Each worker connects to spanning-tree sever
- Server creates a spanning tree on the *n* nodes, communicates parent and children to each node
- Node connects to parent and children via TCP
- AllReduce run on the spanning tree

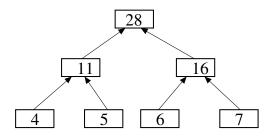
• Every node begins with a number (vector)



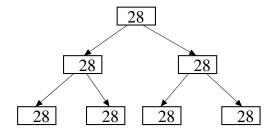
• Every node begins with a number (vector)



• Every node begins with a number (vector)



- Every node begins with a number (vector)
- Every node ends up with the sum



AllReduce Examples

- Counting: n = allreduce(1)
- Average: avg = allreduce(n_i)/allreduce(1)
- Non-uniform averaging: weighted_avg = allreduce(n_iw_i)/allreduce(w_i)
- Gather: node_array = allreduce($\{0,0,\ldots,\underbrace{1}_{i},\ldots,0\}$)

AllReduce Examples

- Counting: n = allreduce(1)
- Average: avg = allreduce (n_i) /allreduce(1)
- Non-uniform averaging: weighted_avg = allreduce(n_iw_i)/allreduce(w_i)
- Gather: node_array = allreduce($\{0,0,\ldots,\underbrace{1}_{i},\ldots,0\}$)
- Current code provides 3 routines:
 - accumulate(<params>): Computes vector sums
 - accumulate_scalar(<params>): Computes scalar sums
 - accumulate_avg(<params>): Computes weighted and unweighted averages

Machine learning with AllReduce

- Previously: Single node SGD, multiple passes over data
- Parallel: Each node runs SGD, averages parameters after every pass (or more often!)
- Code change:

```
if(global.span_server != "") {
    if(global.adaptive)

accumulate_weighted_avg(global.span_server,
params->reg);
    else
        accumulate_avg(global.span_server,
params->reg, 0);
}
```

 Weighted averages computed for adaptive updates, weight features differently

Machine learning with AllReduce contd.

- L-BFGS requires gradients and loss values
- One call to AllReduce for each
- Parallel synchronized L-BFGS updates
- Same with CG, another AllReduce operation for Hessian
- Extends to many other common algorithms

Communication and computation

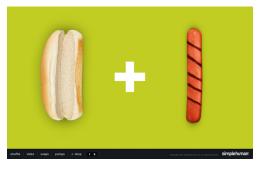
- Two main additions in cluster-parallel code:
 - Hadoop-compatible AllReduce communication
 - New and old optimization algorithms modified for AllReduce

Hybrid optimization for rapid convergence

- SGD converges fast initially, but slow to squeeze the final bit of precision
- L-BFGS converges rapidly towards the end, once in a good region

Hybrid optimization for rapid convergence

- SGD converges fast initially, but slow to squeeze the final bit of precision
- L-BFGS converges rapidly towards the end, once in a good region

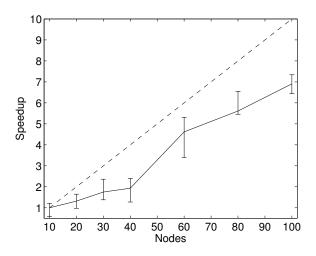


Hybrid optimization for rapid convergence

- SGD converges fast initially, but slow to squeeze the final bit of precision
- L-BFGS converges rapidly towards the end, once in a good region
- Each node performs few local SGD iterations, averaging after every pass
- Switch to L-BFGS with synchronized iterations using AllReduce
- Two calls to VW

Speedup

• Near linear speedup



Hadoop helps

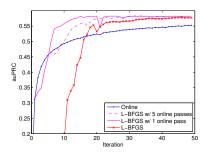
- Naïve implementation driven by slow node
- Speculative execution ameliorates the problem

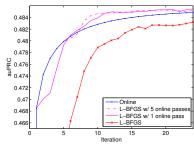
Table: Distribution of computing time (in seconds) over 1000 nodes. First three columns are quantiles. The first row is without speculative execution while the second row is with speculative execution.

	5%	50%	95%	Max	Comm. time
Without spec. exec.	29	34	60	758	26
With spec. exec.	29	33	49	63	10

Fast convergence

• auPRC curves for two tasks, higher is better





Conclusions

- AllReduce quite general yet easy for machine learning
- Marriage with Hadoop great for robustness
- Hybrid optimization strategies effective for rapid convergence
- John gets his kilonode program