-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter_2.tex
985 lines (902 loc) · 42.8 KB
/
chapter_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
\chapter{Measure on $[0, 1]$}
\begin{defn}\label{d:outermeasure}%19
For any subset $E$ of $[0,1]$, the \textbf{outer measure}
of $E$ is
\begin{equation*}
m^\ast(E) = \inf\left\{\sum\limits_{j=1}^\infty \ell(G_j)
: E \subset \bigcup\limits_{j=1}^\infty G_j\right\}
\end{equation*}
where each $G_j = (a_j,b_j)$ is an open interval in $\R$ and
$\ell(G_j) = b_j - a_j$. (Note: this includes finite sums by
setting all $G_j = \emptyset$ from some point on. Also note the $G_j$
need not be contained in $[0,1]$, e.g. in considering $m^\ast(\{1\})$).
\end{defn}
\begin{rmk}~ %20
\begin{enumerate}[(a)]
\item We could use coverings by closed intervals and get the same
result. It is clear that we could get numbers not larger than we
have. (Replace $G_j = (a_j, b_j)$ by $F_j = [a_j, b_j]$.) To
see not smaller, replace closed $F_j$ by open $G_j$ where
$\ell(G_j) = \ell(F_j) + \epsilon / 2^j$.
\item There is also something called inner measure. But it is not
needed, so we won't use it.
\end{enumerate}
\end{rmk}
\begin{pblm}%21
For any subset $E$ of $[0,1]$,
\begin{enumerate}[(a)]
\item $0 \le m^\ast(E) \le 1$.
\item $E \subset F \Rightarrow m^\ast(E) \le m^\ast(F)$.
\item $m^\ast(\emptyset) = m^\ast(\text{one point})=0$.
\end{enumerate}
\begin{proof}
~
\begin{enumerate}[(a)]
\item For any $\epsilon > 0$, consider the open interval $(-\frac{\epsilon}{2}, 1 + \frac{\epsilon}{2})$
that has length $1 + \epsilon$. This is an open cover of $[0,1]$, and so it is also an open
cover of $E \subset [0,1]$. Now, since $\epsilon$ was arbitrarily chosen, $m^\ast(E) \le 1$.
Also, since $m^\ast(E)$ is the infimum of a set of non-negative numbers, $m^\ast(E) \ge 0$.
So $0\le m^\ast(E)\le 1$ for all $E \subset [0,1]$.
\item Let $H=\left\{\sum\limits_{j=1}^\infty\ell(G_j):F\subset\bigcup\limits_{j=1}^\infty G_j\right\}$
and let $G=\left\{\sum\limits_{j=1}^\infty\ell(G_j):E\subset\bigcup\limits_{j=1}^\infty G_j\right\}$.
Since $E\subset F$, we know that $H\subset G$. Therefore $\inf(G)\le\inf(H)$.
\item For any $x \in [0,1]$, consider $(x - \epsilon / 2, x + \epsilon / 2)$ for any
$\epsilon > 0$. This is an open cover of $\{x\}$ with length $\epsilon$. Using the
fact that $\epsilon$ was arbitrarily chosen, the infimum of sums of lengths of intervals
must be less than or equal to $\epsilon$, which implies that $m^\ast(\{x\}) \le 0$.
Now, since $\emptyset \subset \{x\}$, we can use part (b), which gives
$m^\ast(\emptyset) \le m^\ast(\{x\}) \le 0$.
\end{enumerate}
\end{proof}
\end{pblm}
\begin{pblm}%22
If $E$ is a countable set, then $m^\ast(E) = 0$. In particular,
$m^\ast(\Q_0) = 0$ where $\Q_0 = \Q \cap [0,1]$
is the set of all rational numbers in $[0,1]$.
(Given $\epsilon > 0$ cover $E = \{x_k\}_{k=1}^\infty$ with
$\bigcup\limits_{j=1}^\infty G_j$ where $\ell(G_j) = \epsilon / 2^j$.)
\begin{proof}
Suppose $E$ is countable. Then we can write $E = \{x_i\}_{i=1}^\infty$. Then
for any $\epsilon > 0$, define $G_i = (x_i - \frac{\epsilon}{2^{i+1}}, x_i + \frac{\epsilon}{2^{i+1}})$.
Then $\ell(G_i) = 2\frac{\epsilon}{2^{i+1}}=\frac{\epsilon}{2^i}$.
Therefore $\bigcup\limits_{i=1}^\infty G_i$ is an open cover of $E$, and
\begin{equation*}
\sum\limits_{i=1}^\infty\ell(G_i) = \sum\limits_{i=1}^\infty\frac{\epsilon}{2^i} = \epsilon.
\end{equation*}
Therefore
\begin{equation*}
m^\ast(E)\le\inf\left\{\sum\limits_{i=1}^\infty\ell(G_i):E\subset\bigcup\limits_{i=1}^\infty G_i\right\} = 0.
\end{equation*}
and so $m^\ast(E) = 0$.
\end{proof}
\end{pblm}
\begin{rmk}%23
This is the first evidence that covering $E$ with countably infinite
unions rather than finite unions makes a big difference. This is, in
fact exactly the innovation that will allow us to deal much more
efficiently with infinite processes and with irregular sets.
\end{rmk}
\begin{pblm}%24
If $F = [a,b]$ is a closed interval in $[0,1]$, then $m^\ast(F)=b-a$.
($m^\ast(F) \le b - a$ is clear from $G = (a - \epsilon, b + \epsilon)$.
$F$ is compact, so any cover has a finite subcover $\bigcup\limits_{j=1}^n
G_j$. May assume that no element of this subcover can be omitted (Explain
why.) Order them by their left endpoints and show $\sum\limits_{j=1}^n
\ell(G_j) > b - a.$)
\begin{proof}
First we will show that $m^\ast(F) \le (b - a)$ and then that $m^\ast(F) \ge (b-a)$.
Now, $m^\ast(F) = \inf\left\{\sum\limits_{j=1}^\infty\ell(G_j):F\subset\bigcup\limits_{j=1}^\infty G_j\right\}$, and
so if we consider an arbitrary open cover $\{G_j\}_{j=1}^\infty$ of $F$,
$m^\ast(F) \le \sum\limits_{j=1}^\infty\ell(G_j)$.
In particular, Let us consider the open cover $(a - \epsilon / 2, b + \epsilon / 2)$ for
any $\epsilon > 0$. This has length $ (b - a) + \epsilon$. Thus
$m^\ast(F) \le (b - a) + \epsilon$ for all $\epsilon > 0$, and so
\begin{equation*}
m^\ast(F) \le b - a
\end{equation*}
Now, let $\{G_j\}_{j = 1}^n$ be any finite subcover of $F$. Then if there are
$G_k = (a_k, b_k), G_l = (a_l, b_l) \in [0,1]$ such that $G_k \subset G_l$,
then we can throw out $G_k$.
Thus we can remove all extraneous $G_k$, and so if we reorder the elements
of $\{G_j\}_{j=1}^n$ in increasing order such that $a_0 < a $ and $b < b_n$.
With the increasing order for all $j$, $a_j < a_{j+1}$ and
$a_{j+1} < b_j < b_{j+1}$, since otherwise we would have
$(a_j,b_j) \subset (a_{j+1},b_{j+1})$. Then
\begin{equation*}
\sum\limits_{j=1}^n\ell(G_j) = \sum\limits_{j=1}^n (b_j-a_j)
\end{equation*}
This can be re-written as
\begin{equation*}
\sum\limits_{j=1}^n(b_j-a_j) = (b_n - a_1) + (b_{n-1} - a_n) + (b_{n-2} - a_{n-1}) + \cdots
\end{equation*}
Now, since for all $j$, $b_j > a_{j+1}$, this is
\begin{equation*}
b_n - a_1 + \epsilon
\end{equation*}
for some $\epsilon > 0$. Now, since $b = b_n + \epsilon_b$ and
$a_1 = a - \epsilon_b$ for some $\epsilon_a, \epsilon_b > 0$,
we have
\begin{equation*}
b_n + a_1 + \epsilon \ge b_n + a_1 = b - a + (\epsilon_b + \epsilon_a) \ge b - a.
\end{equation*}
Continuing this with $\sum\limits_{j=1}^n\ell(G_j)$, we end with
\begin{equation*}
\sum\limits_{j=1}^n \ell(G_j) \ge b - a
\end{equation*}
Since this open cover was arbitrarily chosen, $(b - a)$ is a lower bound, which means that since $m^\ast(F)$ is
the infimum,
\begin{equation*}
m^\ast(F) = \inf\left\{\sum\limits_{j=1}^\infty\ell(G_j):F\subset\sum\limits_{j=1}^\infty G_j\right\} \ge (b - a)
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}%25
If $E,F \subset [0,1]$, $m^\ast(E\cup F) \le m^\ast(E) + m^\ast(F)$.
\begin{proof}
Since the outer measure of any set $m^\ast$ is an infimum, it is a cluster
point. Therefore for any $\epsilon > 0$, there are open covers $\{G_j\}_{j=1}^\infty$
and $\{H_j\}_{j=1}^\infty$ such that
\begin{equation*}
\sum\limits_{j=1}^\infty\ell(G_j) = m^\ast(E) + \frac{\epsilon}{2} ~~~\text{ and }~~~
\sum\limits_{j=1}^\infty\ell(H_j) = m^\ast(F) + \frac{\epsilon}{2}
\end{equation*}
Now, since $E \subset \bigcup\limits_{j=1}^\infty G_j$ and $F \subset \bigcup\limits_{j=1}^\infty H_j$,
$ E \cup F \subset \left(\bigcup\limits_{j=1}^\infty G_j\right) \cup \left(\bigcup\limits_{j=1}^\infty H_j\right)$
and so
\begin{equation*}
\begin{array}{rcccl}
m^\ast(E \cup F) & \le & \sum\limits_{j=1}^\infty\ell(G_j) + \sum\limits_{j=1}^\infty\ell(H_j)
& = & m^\ast(E) + \frac{\epsilon}{2} + m^\ast(F) + \frac{\epsilon}{2}\\
& & & = & m^\ast(E) + m^\ast(F) + \epsilon
\end{array}
\end{equation*}
Thus $m^\ast(E\cup F) \le m^\ast(E) + m^\ast(F)$.
\end{proof}
\end{pblm}
\begin{pblm}%26
For any subsets $\{E_j\}_{j=1}^\infty$ of $[0,1]$,
$m^\ast\left(\bigcup\limits_{j=1}^\infty E_j\right) \le
\sum\limits_{j=1}^\infty m^\ast (E_j).$
We refer to this property of outer measure as
\textbf{countable subadditivity}.
\begin{proof}
Note that for any set of open covers of all of the $E_j$ is an open cover of $\cup E_j$. That is, for
$\left\{ \{I_{j_k}\}_{k=1}^\infty: E_j \subset \bigcup\limits_{k=1}^\infty I_{j_k}\right\}$,
$\bigcup\limits_{j=1}^\infty E_j \subset \bigcup\limits_{j=1}^\infty\bigcup\limits_{k=1}^\infty I_{j_k}.$
For any $\{E_j\}_{j=1}^\infty$, consider any open covers $\{I_{j_k}\}_{k=1}^\infty$
of each $E_j$. Then since each $m^\ast(E_j)$ is a cluster point, then for any $\epsilon > 0$
there is $\{I_{j_k}\}_{k=1}^\infty$ such that
\begin{equation*}
\sum\limits_{k=1}^\infty \ell(I_{j_k}) \le m^\ast(E_j) + \frac{\epsilon}{2^j}
\end{equation*}
And so for any $\epsilon > 0$, we can choose open covers of each of the $E_j$ such that
\begin{equation*}
m^\ast\left(\bigcup\limits_{j=1}^\infty E_j\right) \le
\sum\limits_{j=1}^\infty\sum\limits_{k=1}^\infty \ell(I_{j_k}) \le
\sum\limits_{j=1}^\infty \left(m^\ast(E_j)+ \frac{\epsilon}{2^j}\right) =
\sum\limits_{j=1}^\infty m^\ast(E_j) + \epsilon
\end{equation*}
Therefore by (5),
\begin{equation*}
m^\ast\left(\bigcup\limits_{j=1}^\infty E_j\right) \le \sum\limits_{j=1}^\infty m^\ast(E_j)
\end{equation*}
\end{proof}
\end{pblm}
\begin{defn}\label{d:measurable}%27
A subset $E$ of $[0,1]$ is \textbf{measurable} if for
each $A \subset [0,1]$,
\begin{equation*}
m^\ast(A) = m^\ast(A\cap E) + m^\ast(A\cap E^c).
\end{equation*}
\end{defn}
\begin{notation}%28
If $E$ is measurable, we write $m(E)$ for $m^\ast(E)$ and refer to
this number as the \textbf{Lebesgue measure} of $E$.
\end{notation}
\begin{rmk}~ %29
\begin{enumerate}[(a)]
\item From the previous problem, to show that $E$ is measurable
one need only prove
$m^\ast(A) \ge m^\ast(A\cap E) + m^\ast(A\cap E^c)$ since the other
direction is automatic.
\item In particular, taking $A = [0,1], 1 = m^\ast(E)+m^\ast(E^c)$
is a necessary condition for measurability. It turns out that this
special case of the definition is also sufficient. The definition
is the way it is (rather than this simpler version) just because
it is a little more convenient to use.
\end{enumerate}
\end{rmk}
\begin{pblm}%30
{\color{gray!10}{thing}}
\begin{enumerate}[(a)]
\item $\emptyset$ is measurable. $[0,1]$ is measurable.
\item $m^\ast(E) = 0 \Rightarrow E$ is measurable.
\end{enumerate}
\begin{proof}
{\color{gray!10}{thing}}
\begin{enumerate}[(a)]
\item In $[0,1]$, $\emptyset^c = [0,1]$, and $[0,1]^c = \emptyset$. Therefore
for any $A \subset [0,1]$,
\begin{equation*}
\begin{array}{rcccl}
m^\ast(A) & = & m^\ast(A \cap [0,1]) & = & m^\ast(A \cap [0,1]) + 0\\
& = & m^\ast(A \cap [0,1]) + m^\ast(\emptyset) & = & m^\ast(A \cap [0,1]) + m^\ast(A \cap \emptyset)
\end{array}
\end{equation*}
Thus $[0,1]$ is measurable.
Similarly,
\begin{equation*}
\begin{array}{rcl}
m^\ast(A) & = & 0 + m^\ast(A \cap [0,1])\\
& = & m^\ast(\emptyset) + m^\ast(A \cap [0,1]) \\
& = & m^\ast(A \cap \emptyset) + m^\ast(A \cap [0,1])
\end{array}
\end{equation*}
Thus $\emptyset$ is measurable.
\item If $m^\ast(E) = 0$, then for any set $A$, $A \cap E \subset E$, and
since $A \cap E^c \subset A$, we have (by 21 (b)):
\begin{equation*}
\begin{array}{rcl}
m^\ast(A\cap E^c) & \le & m^\ast (A)\\
0 + m^\ast(A\cap E^c) & \le & m^\ast (A)\\
m^\ast(A \cap E) + m^\ast(A\cap E^c) & \le & m^\ast (A)
\end{array}
\end{equation*}
Therefore, using the observation in 29(a), $E$ is measurable.
\end{enumerate}
\end{proof}
\end{pblm}
\begin{rmk}%31
In particular, every subset of a set of outer measure 0 is measurable.
\end{rmk}
\begin{pblm}%32
$E$ is measurable $\Leftrightarrow E^c$ is measurable.
\begin{proof}
\begin{equation*}
\begin{array}{rcl}
E ~\text{ is measurable }~ & \Leftrightarrow & ~ \forall A \subset [0,1], m^\ast(A) = m^\ast(A \cap E) + m^\ast(A \cap E^c)\\
& \Leftrightarrow & ~ \forall A \subset [0,1], m^\ast(A) = m^\ast(A \cap E^c) + m^\ast(A \cap E)\\
& \Leftrightarrow & ~ \forall A \subset [0,1], m^\ast(A) = m^\ast(A \cap E^c) + m^\ast(A \cap (E^c)^c)\\
& \Leftrightarrow & E^c ~\text{ is measurable}
\end{array}
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}%33
A closed interval $[a,b]$ is measurable with measure $b-a$.
(Show $m^\ast(A) \ge m^\ast(A\cap[a,b])+m^\ast(A\cap[a,b]^c)-\epsilon$
for every $\epsilon$. If $\bigcup\limits_{j=1}^\infty G_j$ covers $A$
with $\bigcup\limits_{j=1}^\infty \ell(G_j)$ near $m^\ast(A)$, then the
$G_j\cap[a,b]$ are nearly an open cover of $A\cap[a,b]$ by open intervals
and similarly for $G_j\cap[a,b]^c$.)
\vspace{.25cm}
\begin{proof}
Let $A \subset [0,1]$. Then
for any $\epsilon > 0$, choose an open cover $\{G_j\}_{j=1}^\infty$ of $A$
such that $\sum\limits_{j=1}^\infty \ell(G_j) \le m^\ast(A) + \frac{\epsilon}{2}$.
Define $F_1 = \left\{G_k \cap (a, b) \right\}
\cup (a-\frac{\epsilon}{8},a+\frac{\epsilon}{8})
\cup (b-\frac{\epsilon}{8},b+\frac{\epsilon}{8})$,
$F_2 = \left\{G_k \cap [a, b]^c\right\}$,
Then $A \cap [a, b] \subset F_1$ and $A \cap [a, b]^c \subset F_2$.
(note that the elements of $F_2$ are either open intervals or else
sets of the form $(x, a) \cup (b, y)$ for some $x, y \in \R$.
Therefore the notion of length is still well-defined on $F_2$ and $F_2$
is still a collection of open intervals, and thus an open cover)
Since $\{O: O \subset F_1\}$ is an open cover of $A \cap [a, b]$ and
$\{O: O \subset F_2\}$ is an open cover of $A \cap [a, b]^c$,
Therefore,
$m^\ast(A \cap [a,b]) \le \sum\limits_{O \in F_1}\ell(O)$ and
$m^\ast(A \cap [a,b]^c) \le \sum\limits_{O \in F_2}\ell(O)$.
Also, since the only intersection of $F_1$ and $F_2$ is in the
$(a - \frac{\epsilon}{8}, a + \frac{\epsilon}{8})$, $(b - \frac{\epsilon}{8}, b + \frac{\epsilon}{8})$
terms, then
\begin{equation*}
\sum\limits_{O \in F_1 \cup F_2} \ell(O)
\le \sum\limits_{j = 1}^\infty \ell(G_j) +
\ell(a-\frac{\epsilon}{8},a+\frac{\epsilon}{8}) + \ell(b-\frac{\epsilon}{8},b+\frac{\epsilon}{8})
= \sum\limits_{j=1}^\infty\ell(G_j)+\frac{\epsilon}{2}
\end{equation*}
Putting this together with the upper bounds for measures of $A \cap [a, b]$ and $A \cap [a, b]^c$, we get
\begin{equation*}
m^\ast(A \cap [a,b]) + m^\ast(A \cap [a,b]^c) \le
\sum\limits_{O \in F_1 \cup F_2} \ell(O) =
\sum\limits_{k=1}^\infty \ell(G_k) + \frac{\epsilon}{2}
\end{equation*}
And since $\sum\limits_{j=1}^\infty\ell(G_j) \le m^\ast(A) + \frac{\epsilon}{2}$, adding $\frac{\epsilon}{2}$ to
both sides of the inequality gives
$\sum\limits_{j=1}^\infty\ell(G_j) + \frac{\epsilon}{2} \le m^\ast(A) + \epsilon$, which we can substitute
into the previous equation to yield
\begin{equation*}
m^\ast(A \cap [a,b]) + m^\ast(A \cap [a,b]^c) \le
\sum\limits_{k=1}^\infty \ell(G_k) + \frac{\epsilon}{2}
\le m^\ast(A) + \epsilon
\end{equation*}
and so $m^\ast(A \cap [a,b]) + m^\ast(A\cap[a,b]^c) \le m^\ast(A) + \epsilon$, which
can be re-written
\begin{equation*}
m^\ast(A \cap [a,b]) + m^\ast(A\cap[a,b]^c) - \epsilon \le m^\ast(A)
\end{equation*}
For any $A \subset [0,1]$ for all $\epsilon > 0$.
\end{proof}
\end{pblm}
\begin{pblm}%34
If $E$ and $F$ are measurable, then so are $E \cap F$, $E \cap F^c$,
$E^c \cap F$, and $E^c \cap F^c$.
(To show $m^\ast(A) \ge m^\ast(A\cap E\cap F)+m^\ast(A\cap(E\cap F)^c)$
use the measurability of $F$ with test set $A \cap E$. It is not
necessary to go back to the level of open covers.)
\begin{proof}
Note first that For any sets $A, B, C$,
\begin{equation*}
\{A \cap B \cap C^c \}
\cup
\{A \cap B^c \cap C\}
\cup
\{A \cap B^c \cap C^c\} = A \cap (B^c \cup C^c) = A \cap (B \cap C)^c
\end{equation*}
Now, since $E$ is measurable, for any $A \subset [0,1]$,
\begin{equation*}
\begin{array}{rcl}
m^\ast(A) & = & m^\ast(A \cap E) + m^\ast(A \cap E^c) \\
& = & m^\ast(A \cap E \cap F) + m^\ast(A \cap E \cap F^c) \\
& & + m^\ast(A \cap E^c \cap F) + m^\ast(A \cap E^c \cap F^c) \\
& \ge & m^\ast(A \cap E \cap F) + m^\ast((A\cap E\cap F^c)
{\scriptstyle \cup}(A\cap E^c\cap F){\scriptstyle \cup}(A\cap E^c\cap F^c)) \\
& = & m^\ast(A \cap E \cap F) + m^\ast(A \cap (E \cap F)^c)
\end{array}
\end{equation*}
Now, since $E$ is measurable, $E^c$ is measurable, and similarly for $F^c$. Also,
Since the intersection of two arbitrary measurable sets is measurable (just shown),
then $E^c \cap F$, $E \cap F^c$ and $E^c \cap F^c$ are all measurable given that
$E$ and $F$ are.
\end{proof}
\end{pblm}
\begin{pblm}%35
If $E$ and $F$ are measurable, then so is $E \cup F$. If $E$ and $F$ are disjoint,
then $m(E \cup F) = m(E) + m(F)$.
\begin{proof}
if $E$ and $F$ are measurable, then so are $E^c$ and $F^c$, and so
$E^c \cap F^c$ is also. Therefore $E^c \cap F^c = (E \cup F)^c$ is also
measurable, so $E \cup F$ is also measurable.
Now, if $E$ and $F$ are measurable and disjoint, then taking the set $E \cup F$
together with the measurability of $E$, (and given that $E \cup F$ is measurable also)
\begin{equation*}
\begin{array}{rcl}
m(E \cup F) &=& m( (E \cup F) \cap E) + m( (E \cup F) \cap E^c)\\
&=& m(E) + m(F)\\
\end{array}
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}%36
Any interval $\langle a,b\rangle$ with any choice of endpoints is
measurable with measure $b-a$.
\begin{proof}
From problem 33, $[a, b]$ is measurable with measure $b - a$.
On the other hand, if we consider the set $(a, b)$,
$m^\ast((a, b)) \le m^\ast([a,b]) = b - a$
Now, from problem 21 (c), $m^\ast(\{a\}) = m^\ast(\{b\}) = 0$, and so
by 30(b), $\{a\}$ and $\{b\}$ are both measurable sets with measure
$0$. Therefore, since (by 35) $(a, b) \cap \{a\} = (a, b) \cap \{b\} = \emptyset$, and
\begin{equation*}
\begin{array}{c}
m^\ast((a, b)) = m^\ast( (a, b) \cup \{a\} \cup \{b\}) = m^\ast([a, b]) = b - a\\
\\
m^\ast(\left[\right.a, b\left.\right)) = m^\ast((a, b) \cup \{a\}) = m^\ast((a, b)) + m^\ast(\{a\})= m(a, b) = b - a\\
\\
m^\ast(\left(\right.a, b\left.\right]) = m^\ast((a, b) \cup \{b\}) = m^\ast((a, b)) + m^\ast(\{b\})= m(a, b) = b - a\\
\end{array}
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}%37
Any finite union or intersection of measurable sets is measurable.
If $\{E_k\}_{k=1}^n$ are measurable and disjoint, then
$m\left(\bigcup\limits_{k=1}^n E_k\right) = \sum\limits_{k=1}^nm(E_k)$.
(Induction).
\begin{proof}
\begin{itemize}
\item Base case: proven in problem 35
\item Induction step: Given that $m\left(\bigcup\limits_{k=1}^nE_k\right) = \sum\limits_{k=1}^nm(E_k)$,
and given that $E_{n+1}$ is measurable, then let $F = \bigcup\limits_{k=1}^nE_k$.
Since $E_{n+1}$ and $F$ are both measurable, then by 35, $\bigcup\limits_{k=1}^{n+1}E_k = E \cup F$ is also measurable.
If $E_{n+1}$ and $F$ are disjoint, then by 35,
\begin{equation*}
m\left(\bigcup\limits_{k=1}^{n+1}E_k\right) =
m(E \cup F) = m(E) + m(F)
= \sum\limits_{k=1}^{n+1}m(E_k)
\end{equation*}
\end{itemize}
\end{proof}
\end{pblm}
\begin{pblm}%38
Let $E_1, E_2, ... , E_n$ be pairwise disjoint and measurable. Then
for any $A$,
\begin{equation*}
m^\ast(A) = \sum\limits_{k=1}^nm^\ast(A\cap E_k)+m^\ast
\left(A\cap\left(\bigcup\limits_{k=1}^nE_k\right)^c\right).
\end{equation*}
\begin{proof}
Base Case: Let $E_1, E_2$ be pairwise disjoint and measurable. Then for any $A$,
\begin{equation*}
\begin{array}{rcccc}
m^\ast(A) & = & m^\ast(A \cap (E_1 \cup E_2)) &+& m^\ast(A\cap(E_1\cup E_2)^c)\\
& = & m^\ast\left((A \cap E_1)\cup (A \cap E_2)\right) & + & m^\ast(A \cap (E_1 \cup E_2)^c)\\
& = & m^\ast(A \cap E_1) + m^\ast(A \cap E_2) & + & m^\ast(A\cap (E_1\cup E_2)^c)
\end{array}
\end{equation*}
Now, assume that $E_1, E_2, ... , E_n$ are pairwise disjoint and measurable, and also
that $E_{n+1}$ is measurable and $E_i \cap E_{n+1} = \emptyset$ for all $i \in \{1, ... , n\}$.
Assume furthermore that for all $A$,
\begin{equation*}
m^\ast(A) = \sum\limits_{k=1}^nm^\ast(A\cap E_k)+m^\ast
\left(A\cap\left(\bigcup\limits_{k=1}^nE_k\right)^c\right).
\end{equation*}
Then $F = \bigcup\limits_{k=1}^nE_k$ is a measurable set that is disjoint from $E_{n+1}$, and therefore
for all $A$,
\begin{equation*}
\begin{array}{rcl}
m^\ast(A) &=& m^\ast(A \cap F) + m^\ast(A\cap E_{n+1}) + m^\ast(A \cap (F \cup E_{n+1})^c)\\
&=&\sum\limits_{j=1}^nm^\ast(A\cap E_j) + m^\ast(A\cap E_{n+1}) +
m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^nE_j \cup E_{n+1}\right)^c\right)\\
&=&\sum\limits_{j=1}^{n+1}m^\ast(A\cap E_j) + m^\ast\left(A\cap\left(\bigcup\limits_{j=1}^{n+1}E_j\right)^c\right)
\end{array}
\end{equation*}
Note that the expansion of $m^\ast(A\cap F)$ into a sum of measures from the first to second line
is due to the fact that all of the $E_j$ are disjoint, and so the $A \cap E_j$ are also, and so
37 states that the measure of the union is therefore equal to the sum of the measures.
\end{proof}
\end{pblm}
\begin{pblm}%39
Let $\{E_k\}_{k=1}^\infty$ be pairwise disjoint and measurable. Then
for any $A$,
\begin{equation*}
m^\ast(A) = \sum\limits_{k=1}^nm^\ast(A\cap E_k)+m^\ast
\left(A\cap\left(\sum\limits_{k=1}^nE_k\right)^c\right).
\end{equation*}
($\left\{\sum\limits_{k=1}^n m^\ast(A\cap E_k)\right\}_{n=1}^\infty$
is a non-decreasing sequence that converges to
$\sum\limits_{k=1}^\infty m^\ast(A\cap E_k)$.
$\{s_n\}_{n=1}^\infty =
\left\{
m^\ast \left(A\cap\left(\sum\limits_{k=1}^nE_k\right)^c\right)
\right\}_{n=1}^\infty$
is a non-increasing sequence all of whose terms are at least
$m^\ast \left(A\cap\left(\sum\limits_{k=1}^nE_k\right)^c\right).$ These
imply $m^\ast (A) \ge \sum\limits_{k=1}^\infty m^\ast(A\cap E_k) +
m^\ast \left(A\cap\left(\sum\limits_{k=1}^nE_k\right)^c\right).$ )
\begin{proof}
First note that for every $n \in \Zp$,
\begin{equation*}
m^\ast\left(\bigcup\limits_{j=1}^n(A\cap E_j)\right) = \sum\limits_{j=1}^n m^\ast(A \cap E_j)
\end{equation*}
Therefore, when we consider the sequence
$\left\{m^\ast\left(\bigcup\limits_{j=1}^n(A\cap E_j)\right)\right\}_{n=1}^\infty$,
this is equivalently written as $\left\{\sum\limits_{j=1}^nm^\ast(A\cap E_j)\right\}_{n=1}^\infty$.
Since $\left\{\sum\limits_{j=1}^nm^\ast(A\cap E_j)\right\}_{n=1}^\infty$ is a sequence of
non-decreasing partial sums each of which is bounded by $[0,1]$, we know the limit of this
sequence is bounded, and therefore (by 12)
\begin{equation*}
\lim\limits_{n\to\infty} m^\ast\left(\bigcup\limits_{j=1}^n(A\cap E_j)\right) =
\lim\limits_{n\to\infty} \sum\limits_{j=1}^nm^\ast(A\cap E_j) = \sum\limits_{j=1}^\infty m^\ast(A \cap E_j)
\end{equation*}
Now, since $\{S_n\}_{n=1}^\infty =
\left\{m^\ast\left(A \cap \left(\cup_{j=1}^n E_j\right)^c\right)\right\}_{n=1}^\infty$
is a non-increasing sequence, all of whose terms are at least
$m^\ast\left(A\cap\left(\cup_{j=1}^\infty E_j\right)^c\right)$, then for every $n \in \Zp$,
\begin{equation*}
\sum\limits_{j=1}^\infty m^\ast(A \cap E_j) +
m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^n E_j\right)^c\right)
\ge
\sum\limits_{j=1}^\infty m^\ast(A \cap E_j) +
m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^\infty E_j\right)^c\right)
\end{equation*}
and so
\begin{equation*}
\begin{array}{l}
\lim\limits_{n\to\infty}
\left\{
m^\ast\left(\bigcup\limits_{j=1}^n(A\cap E_j)\right) +
m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^n E_j\right)^c\right)
\right\} \\
=
m^\ast\left(\bigcup\limits_{j=1}^\infty(A\cap E_j)\right) +
\lim\limits_{n\to\infty}
m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^n E_j\right)^c\right) \\
=
\sum\limits_{j=1}^\infty m^\ast(A \cap E_j) +
\lim\limits_{n\to\infty}
m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^n E_j\right)^c\right) \\
\ge
\sum\limits_{j=1}^\infty m^\ast(A \cap E_j) +
m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^\infty E_j\right)^c\right)
\end{array}
\end{equation*}
Therefore
\begin{equation*}
m^\ast(A) \ge \sum\limits_{j=1}^\infty m^\ast(A \cap E_j) + m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^\infty E_j\right)^c\right)
\end{equation*}
and so by the criterion in (25)
\begin{equation*}
m^\ast(A) = \sum\limits_{j=1}^\infty m^\ast(A \cap E_j) + m^\ast\left(A \cap \left(\bigcup\limits_{j=1}^\infty E_j\right)^c\right)
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}%40
Let $\{E_k\}_{k=1}^\infty$ be measurable. Then
$\bigcup\limits_{k=1}^\infty E_k$ is measurable. If the $E_k$ are
pairwise disjoint, then
\begin{equation*}
m\left(\bigcup\limits_{k=1}^\infty E_k\right)
= \sum\limits_{k=1}^\infty m(E_k).
\end{equation*}
(Unions can be written as disjoint unions.) This property is called
\textbf{countable additivity}.
\begin{proof}
Let $\{E_j\}_{j=1}^\infty$ be measurable. Then by (4), we can define
\begin{equation*}
\begin{array}{rcl}
F_1 = E_1 & & F_k = E_k \setminus \bigcup\limits_{j=1}^{k-1}E_j \\
\text{ where }~~ F\bigcup\limits_{j=1}^\infty F_j & = & \bigcup\limits_{j=1}^\infty E_j
\end{array}
\end{equation*}
and since for all $n$, $F_n$ is a finite intersection of measurable sets, $F_n$
is measurable. Therefore $\{F_j\}_{j=1}^\infty$ is a sequence of measurable sets
that are pairwise disjoint, so by (39), for any $A$,
\begin{equation*}
\begin{array}{rcl}
m^\ast(A) & = & \sum\limits_{k=1}^\infty m^\ast(A\cap F_k) +
m^\ast\left(A\cap\left(\bigcup\limits_{k=1}^\infty F_k\right)^c\right)\\
& = & m^\ast\left(\bigcup\limits_{k=1}^\infty (A\cap F_k)\right) +
m^\ast\left(A\cap\left(\bigcup\limits_{k=1}^\infty F_k\right)^c\right)\\
& = & m^\ast\left(A\cap\bigcup\limits_{k=1}^\infty F_k\right) +
m^\ast\left(A\cap\left(\bigcup\limits_{k=1}^\infty F_k\right)^c\right)\\
& = & m^\ast\left(A\cap\bigcup\limits_{k=1}^\infty E_k\right) +
m^\ast\left(A\cap\left(\bigcup\limits_{k=1}^\infty E_k\right)^c\right)\\
\end{array}
\end{equation*}
So $\bigcup\limits_{k=1}^\infty E_k$ is measurable.
Now, assume that the $E_j$ are pairwise disjoint. Then letting
$F = \bigcup\limits_{k=1}^\infty E_k$, we can use the fact just proven that
$\bigcup\limits_{k=1}^\infty E_k$ is measurable together with the test set $F$ and by (39),
\begin{equation*}
\begin{array}{rcl}
m^\ast(F) &=& \sum\limits_{k=1}^\infty m^\ast(F\cap E_k) +
m^\ast\left(F\cap\left(\bigcup\limits_{k=1}^\infty E_k\right)^c\right)\\
m^\ast(F) &=& \sum\limits_{k=1}^\infty m^\ast(F\cap E_k) +
m^\ast\left(F\cap(F)^c\right)\\
m^\ast(F) &=& \sum\limits_{k=1}^\infty m^\ast(F\cap E_k) + m^\ast(\emptyset)\\
m^\ast(F) &=& \sum\limits_{k=1}^\infty m^\ast(F\cap E_k) \\
m^\ast\left(\bigcup\limits_{k=1}^\infty E_k\right) &=&
\sum\limits_{k=1}^\infty m^\ast\left(\left[\bigcup\limits_{j=1}^\infty E_j\right] \cap E_k\right) \\
m^\ast\left(\bigcup\limits_{k=1}^\infty E_k\right) &=&
\sum\limits_{k=1}^\infty m^\ast(E_k)
\end{array}
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}\label{p:osouseful}%41
Let $\{E_k\}_{k=1}^\infty$ be measurable and nested: $E_1 \subset E_2
\subset ... $ If $\bigcap\limits_{k=1}^\infty E_k = \emptyset$, then
$\lim\limits_{k\to\infty} m(E_k) = 0$.
($E_1$ is a disjoint union $\bigcup\limits_{k=1}^\infty F_k$ where
$F_1 = E_1 \setminus E_2$, $F_2 = E_2 \setminus E_3$ etc.
$m(E_n) = \sum\limits_{k=n}^\infty m(F_k)$.)
\begin{proof}
Since these sets are nested,
\begin{equation*}
m(E_1)= m(\bigcup_{k=1}^\infty E_k).
\end{equation*}
Since $\{E_k\}_{k=1}^\infty$ is countable, let $F_k = E_k\setminus E_{k+1}$.
Then by problem 40,
\begin{equation*}
m(E_1)=m(\bigcup_{k=1}^\infty E_k)=m(\bigcup_{k=1}^\infty F_k) = \sum_{k=1}^\infty F_k
\end{equation*}
Now, let $\bigcap _{k=1}^\infty E_k =\emptyset$.
\begin{equation*}
E_1\setminus E_k = \bigcup_{j=1}^{k-1} F_j
\end{equation*}
and since the $F_k$ are disjoint,
\begin{equation*}
\bigcup_{j=1}^k E_j\setminus\bigcap_{j=1}^{k}E_j = \bigcup_{j=1}^{k-1} F_j=\bigcup_{j=1}^{k} F_j\setminus F_k
\end{equation*}
After rearranging the terms, we get
\begin{equation*}
\bigcap_{j=1}^{k}E_j = \bigcup_{j=1}^k E_j\setminus\left(\bigcup_{j=1}^{k} F_j\setminus F_k \right)
\end{equation*}
Since these are countable unions and intersections of measurable sets, we have
\begin{equation*}
m\left(\bigcap_{j=1}^{k}E_j\right) = m\left(\bigcup_{j=1}^k E_j\setminus\left(\bigcup_{j=1}^{k} F_j\setminus F_k \right)\right)
\end{equation*}
Taking the limit as $k$ goes to infinity, we have
\begin{equation*}
\begin{array}{rcl}
m(\emptyset) &=& m(E_1) - m(E_1) + \lim\limits_{k\to\infty}m(F_k)\\
0 &=& \lim\limits_{k\to\infty}m(F_k) \\
& = & \lim\limits_{k\to\infty}m(E_k\setminus E_{k+1})
\end{array}
\end{equation*}
Since $\bigcap _{k=1}^\infty E_k =\emptyset, \lim\limits_{k\to\infty}m(E_k\setminus E_{k+1}) =0$
can only be true if $\lim\limits_{k\to\infty}m(E_k) = 0$
therefore if $\{E_k\}_{k=1}^\infty$ are measurable and nested, then
\begin{equation*}
E_1 \supset E_2 \cdots \textnormal{ and }\bigcap _{k=1}^\infty E_k =\emptyset
\end{equation*}
then $\lim\limits_{k\to \infty} m(E_k) = 0$
\end{proof}
\end{pblm}
\begin{defn}\label{d:dotplus}%42
If $E \subset [0,1]$ and $r$ is a real number, the n $E \Dp r$ is the set of
$\left[\left.0,1\right)\right.$ consisting of all fractional parts of the set
$\{x+r:x\in E\}$. Geometrically, add $r$ to each element of $E$ and then translate
the elements by an integer so that they land back in $\left[\left.0,1\right)\right.$.
(This can mean ``breaking the set into two parts.'' For instance $[0,.4] \Dp
\frac{3}{4} = [0,.15] \cup [3/4, 1).$)
\end{defn}
\begin{pblm}%43
If $E$ is measurable and $r$ is a real number, then $E \Dp r$ is
measurable and $m(E\Dp r) = m(E)$. \\ (I found it helpful (i) to
show that if $A$ is any subset of $[0,1]$, (not necessarily measurable)
and $r \in \R$ is such that $A + r \subset[0,1]$, then
$m^\ast(A) = m^\ast(A + r)$ and (ii) to remember that we have already
seen in a previous problem that if $A$ is any subset of $[0,1]$ and
$s \in (0,1)$ then $m^\ast(A) = m^\ast(a \cap [0,s]) + m^\ast(A\cap(s,1])$.)
\begin{proof}
\end{proof}
\end{pblm}
\begin{rmk}%44
We can sum up what we have done so far like this. \\
The set $\M$ of Lebesgue measurable subsets of $[0,1]$ has the following
properties
\begin{enumerate}
\item $\emptyset \in \M$
\item Every interval is in $\M$ with $m\left(\langle a, b\rangle\right) = b - a$.
Moreover every open subset of $[0,1]$ is in $\M$.
\item $E \in \M \Rightarrow E^c \in \M$.
\item $E \in \M \Rightarrow E\Dp r \in \M$ and $m(E \Dp r) = m(E)$.
\item If $\{E_k\}_{k=1}^\infty$ are in $\M$, then $\bigcup\limits_{k=1}^\infty E_k \in
\M$.
\item If, in addition, the $E_k$ are pairwise disjoint, then $m\left(\bigcup\limits_{k=1}^\infty
E_k \right) = \sum\limits_{k=1}^\infty m(E_k)$
\end{enumerate}
\end{rmk}
\begin{ex}%45
ince the set $\Q_0$ of rational numbers in $[0,1]$ is countable, $\Q_0$
is measurable and $m(\Q_0) = 0$. Then $\Q_0^c$-the set of irrational
numbers in $[0,1]$-is also measurable, and
$m(\Z_0^c) = m([0,1]) - m(\Q_0) = 1$. Thus the ``length'' of the
irrationals is 1, while the ``length'' of the rationals is 0. This is connected to the fact
that $\Q_0$ is countable while $\Q_0^c$ is uncountable, but it would
be wrong to assume that all uncountable subsets of $[0,1]$ have measure 1, or even
nonzero measure. See the next example.
\end{ex}
\begin{ex}%46
Recall that the Cantor set $C$ is the subset of $[0,1]$ that remains after removing
$\bigcup\limits_{k=1}^\infty I_k$ where $I_1 = \left(\frac{1}{3},\frac{2}{3}\right)$,
$I_2 = \left(\frac{1}{9},\frac{2}{9}\right) \cup \left(\frac{7}{9},\frac{8}{9}\right)$
and in general $I_k$ is the union of the $2^k$ open middle thirds of the closed intervals
remaining after $I_{k-1}$ has been removed. Furthermore, $m(I_k) = \frac{1}{3}\left(\frac{2}{3}\right)^{k-1}$
so that $m\left(\bigcup\limits_{k=1}^\infty I_k\right) = \frac{1}{3}\sum\limits_{k=0}^\infty
\left(\frac{2}{3}\right)^k = 1$ and $m(C) = 0$.
\end{ex}
\begin{rmk}%47
It is not immediately obvious from the construction above that $C$ is uncountable.
Some of you at least have seen an alternative characterization of $C$ as the set
of all numbers in $[0,1]$ with a ternary expansion containing only 0's and 2's.
Since this set can be put in 1-1 correspondence with the set of all binary expansions
of numbers in $[0,1]$, that is, with $[0,1]$, it is true that $C$ is uncountable. Thus
the Lebesgue measure of a set is not particularly connected to the cardinality of
the set. These are two rather different versions of the ``size'' of an infinite set.
\end{rmk}
\begin{pblm}%48
By altering the lengths of the removed intervals, construct a ``fat Cantor set''-a
Cantor set of positive measure. Ideally, show how to construct a Cantor set of
measure $\alpha$ for any $\alpha < 1$. \\
(You can check that if you try to imitate the Cantor set construction by
removing a constant fraction of what remains at each stage, the total length of
removed intervals will be 1 no matter what the fraction removed is, so you will
have to be a little cleverer than that. Try to make choices so that your
calculations are reasonably easy.)
\begin{proof}
For any $\alpha < 1$, let $\beta = 1 - \alpha$. We will construct the
complement $C_f^c$ of a ``fat Cantor set $C_f$'' that has measure $\beta$
so that the measure of $C_f$ is $1 - \beta = \alpha$.
To construct this set, as with the Cantor set, we will use the intervals
that are discarded from the center of a given interval at each step.
For the first step, remove the interval of length $\frac{\beta}{2}$ from
the center of the interval $[0,1]$. Then at each successive step, remove the
intervals of length $\frac{\beta}{2^{2n}}$ from the center of each remaining
open interval.
\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (10,0);
\node at (0.0, 0) {$($};
\node at (10., 0) {$)$};
\node at ( 0, .5) {0};
\node at (10, .5) {1};
\draw [thick] (4,0) -- (6,0);
\node at (4.0, 0) {$($};
\node at (6.0, 0) {$)$};
\node at (5,1) {$\frac{\beta}{2}$};
\draw [thick] (1.5, 0) -- (2.5, 0);
\node at (1.5, 0) {$($};
\node at (2.5, 0) {$)$};
\node at (2,1){$\frac{\beta}{2^2}$};
\draw [thick] (7.5, 0) -- (8.5, 0);
\node at (7.5, 0) {$($};
\node at (8.5, 0) {$)$};
\node at (8,1){$\frac{\beta}{2^2}$};
\end{tikzpicture}
\end{center}
The intervals removed form a set that has a sum length of intervals of
\begin{equation*}
\frac{\beta}{2} + 2\frac{\beta}{4^2} + \dots = \beta\sum\limits_{i=1}^\infty \frac{1}{2^i} = \beta
\end{equation*}
which means that the complement of this set has measure $1 - \beta = \alpha$.
\end{proof}
\end{pblm}
\begin{rmk}%49
Properties (1),(3),(5) of \#44 are really structural properties of the collection
$\M$ of measurable subsets of $[0,1]$. How interesting they are depends
on whether $\M$ is just the set of all subsets of $[0,1]$ (sometimes
called the \textbf{power set} $\Sp([0,1])$) or some proper collection of
$\Sp([0,1])$. We ``construct'' some non-measurable sets in order to see
that $\M \neq \Sp([0,1])$. This makes the structural properties
much more interesting.
Given $x \in [0,1]$, let $A_x = \{y \in [0,1] : x - y \in \Q\}$.
Each $A_x$ is a countable set. Clearly $y \in A_x \Leftrightarrow
x \in A_y$. If $x \in A_y$ and $y \in A_z$, then $x - z = (x + y)
+ (y - z)$ is rational so $z \in A_x$. It follows that the relation
$x \sim y$ if $y \in A_x$ is reflexive, symmetric and transitive,
that is, it is an \textbf{equivalence relation}. Each distinct set
$A_x$ is an \textbf{equivalence class}. As you have probably
verified somewhere else, distinct equivalence classes are disjoint,
that is, if $x \neq y$ then either $A_x = A_y$ or $A_x$ and $A_y$
are disjoint. (Easy if you haven't done it before.)
Now choose one element from each distinct equivalence class, and
let $E$ be the set of all such elements. $E$ is an uncountable set;
otherwise $[0,1]$ would be a countable union of countable sets, and
so countable. See the remark below about hte choice process.
Let $\{q_k\}_{k=1}^\infty$ be an enumeration of the set $\Q_0$ of
rationals in $[0,1]$, I claim the sets $\{E \Dp q_k : k = 1, 2, 3\}$
are disjoint and that their union is $[0,1]$. First note that for
any $x \in [0,1]$, $x \in E \Dp q_k$ if for some $e \in E$, either
$x = e + q_k$ (if $e + q_k < 1$) or $x = e + q_k - 1$ (in case
$e + q_k \ge 1$). Now $x$ is in the same equivalence class $A_x$ as
some element $e$ of $E$. Thus $|x - e| = q_k$ for some $k$ and we
see that either $x \in E \Dp q_k$ (if $x \ge e$) or $x \in E \Dp
(1 - q_k)$ (if $x < e$). Next we see that the $\{E \Dp q_k\}$ are
pairwise disjoint. If $x = e + q_k = e^t + q_j$, then $e - e^t =
q_j - q_k$, that is, $e$ and $e^t$ are in the same equivalence
class. This is a contradiciton.
To summarize, $[0,1] = \bigcup\limits_{k=1}^\infty (E \Dp q_k)$ as
a disjoint union. Further, by property 4 of \#44, either all these
sets are measurable with the same measure, or all are non -
measurable. But the first alternative is impossible by property 6
of \#44. Thus we have a countably infinite collection of non-measurable
sets.
\end{rmk}
\begin{rmk}%50
The construction of $E$ in the preceding example used the property
that I can make a set by choosing one element out of a collection of
non-empty sets. The assertion that one can do this is called the
\textbf{Axiom of Choice}. In the early twentieth century when
mathematicians and logicians were trying to construct all of
mathematics from a precisely defined set of axioms, and to show that
the mathematics so obtained would be consistent (no possibility that
legal arguments would produce a contradiction), the relationship
between the Axiom of Choice and other ``usual axioms'' was much studied,
because the Axiom of Choice has surprising consequences (e.g. that it
is possible to order the set of real numbers so that each subset of
reals has a least element in the ordering-just like the positive integers
with the usual ordering. This is called a Well-Ordering.) However in
1963 Paul Cohen completed the proof that AofC is independent of the other
axioms of set theory. This marked the very end of the interest that most
mathematicians have in the foundations of mathematics. (Most feel that it
is new ideas and connections that are of interest, and Cohen's result
showed that AofC, which is often very convenient, can't ``make things
worse'' (introduce contradictions where there were none before.)).
\end{rmk}
\begin{defn}\label{d:sigmaalgebra}%51
A collection $\A$ of subsets of a non-empty set $X$ is a
$\sigma-$\textbf{algebra} of subsets if $\A$ has the properties
\begin{enumerate}[(i)]
\item $\emptyset \in \A$,
\item $E \in \A \Leftrightarrow E^c \in \A$
\item if $\{E_k\}_{k=1}^\infty$ are in $\A$, then
$\bigcup\limits_{k=1}^\infty E_k \in \A$
\end{enumerate}
\end{defn}
\begin{rmk}%52
Thus $\M$ is a proper $\sigma$-algebra of subsets of $\Sp([0,1])$,
the power set of $[0,1]$. Another $\sigma-$algebra of subsets of
$\Sp([0,1])$ is the collection $\B$ of all \textbf{Borel subsets} of
$[0,1]$. $\B$ is defined to be the smallest $\sigma-$algebra of subsets
of $\Sp([0,1])$ that contains the open sets. (Take the intersection of all
such $\sigma-$algebras.) Clearly $\B\subset\M$. It can be shown that $\B$
and $\M$ are different by a cardinality argument-Since the Cantor set $C$
can be put into 1-1 correspondence with $\Sp([0,1])$. All elements in
$\Sp(C)$ are measurable, since they are subsets of a set of measure 0,
thus $\M$ has the same cardinality as $\Sp([0,1])$. On the other hand, $\B$
can also be generated in a countable fashion from the set of open intervals
with rational endpoints. Thus its cardinality is the same as that of
$[0,1]$ and so strictly less than that of $\Sp([0,1])$.
On the other hand, every measurable set is ``nearly'' an open set, and
also ``nearly'' a closed set. This is the content of the next problem.
\end{rmk}
\pagebreak
\begin{pblm}%53
The following properties are equivalent for a subset $E$ of $[0,1]$
\begin{enumerate}[(i)]
\item $E \in \M$
\item for each $\epsilon > 0$ there is an open set $G$ such that
$E \subset G$ and $m^\ast(G\setminus E) < \epsilon$.
\item there is a $G_\delta$ set $H$ such that $E \subset H$ and
$m^\ast(H\setminus E) = 0$. \\
(A $G_\delta$ set is a countable intersection of open sets. A
$G_\delta$ is a Borel set but not open in general, for instance
any closed interval is a $G_\delta$. (Proof?-but not a problem))
\item for each $\epsilon > 0$ there is a closed set $F$ such that
$F \subset E$ and $m^\ast(E\setminus F) < \epsilon$.
\item there is an $F_\sigma$ set $K$ (a countable union of closed
sets, e.g. $\Q_0$) such that $K \subset E$ and
$m^\ast(E\setminus K) = 0$.
(We will split this into two parts, from two different people,
first (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) $\Rightarrow$ (i),
second (ii) $\Rightarrow$ (iv) $\Rightarrow$ (v) $\Rightarrow$ (i).)
\end{enumerate}
\begin{proof}
\noindent $(i) \Rightarrow (ii)$: If $E$ is a measurable set, then for each
$\epsilon > 0$ there is an open cover $\{G_j\}_{j=1}^\infty$ of $E$ such that
\begin{equation*}
m(E) < \sum\limits_{j=1}^\infty \ell(G_j) < m(E) + \epsilon
\end{equation*}
Now, let $G = \bigcup\limits_{i=1}^\infty G_j$. Then
$G$, as a union of open sets, is itself open. Also, since the $G_j$ were
chosen as an open cover of $E$, $E \subset G$, and so (since $G\setminus E$
and $E$ are mutually disjoint),
\begin{equation*}
m^\ast(G \setminus E) + m^\ast(E) \le m^\ast(G) \le m^\ast(E) + \epsilon
\end{equation*}
which can be re-written
\begin{equation*}
m^\ast(G \setminus E) + m^\ast(E) \le m^\ast(E) + \epsilon ~~ \Rightarrow ~~ m^\ast(G \setminus E) \le \epsilon
\end{equation*}
\noindent $(ii) \Rightarrow (iii)$:
Let $H=\bigcup\limits_{k=1}^\infty H_i$ where $E\subset H_i,\,\forall i$ and (from part (ii)):
\begin{equation*}
m^\ast(H_i\setminus E) = \frac{1}{i}
\end{equation*}
Then $E\subset H$ and $H = \bigcup_{k=1}^\infty H_i$ is a $G_\delta$ set such that
$ m^\ast(H\setminus E) = \lim\limits_{i\to\infty} \frac{1}{i} = 0. $
\noindent $(iii) \Rightarrow (i)$:
Given a $G_\delta$ set $H$, such that $E \subset H$, and $m^\ast(H\setminus E) = 0$,
Then $H$ is measurable since $\M$ is a $\sigma$-algebra.
\begin{equation*}
E = (H\setminus E)^c \cap H.
\end{equation*}
Notice all the constituent sets are measurable, thus $E\in\M$.
\noindent $(ii) \Rightarrow (iv)$:
Let $\epsilon > 0$. Then there is an open set $G$ such that
$E\subset G$ and $m^\ast(G\setminus E) < \epsilon$.
Then $E^c$ is also measurable
and so there is an open set $F^c$ such that $E^c\subset F^c$ and
$m^\ast(F^c\setminus E) \le \epsilon$. This implies $F\subset E$.
Then $m^\ast(F^c\setminus E^c)=m^\ast(F^c\cap E) = m^\ast(E\cap F^c) < \epsilon$.
\noindent $(iv) \Rightarrow (v)$:
Let $K\subset E$ such that $K=\bigcup_{k=1}^\infty F_i$, and each $F_i\in E$
$m^\ast(E\cap F_i^c) < \frac{\epsilon}{2^k}$. Then $E\setminus K \subset F_i$.
Furthermore,
\begin{equation*}
m^\ast(E\setminus K) < m^\ast(E\setminus F_i) < \frac{\epsilon}{2^k} < \epsilon
\end{equation*}
for all $1 \le k \le \infty$
\noindent $(v) \Rightarrow (i)$:
Let $K$ be an $F_\sigma$ set such that $K\subset E$ and $m^\ast(E\setminus K)= 0$.
Then $m^\ast(E\setminus K)$ is measurable. Also, since $K$ is an $F_\sigma$ set,
it is a countable union of closed sets and is therefore measurable.
Then $E = K\cup E\setminus K$ is the union of measurable sets.
Thus $E$ is measurable.
\end{proof}
\end{pblm}