-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter_5.tex
768 lines (720 loc) · 32.8 KB
/
chapter_5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
\chapter{The Lebesgue Integral}
\begin{rmk} ~ %86
\begin{enumerate}
\item Recall that in the Riemann theory of integration, for a bounded
function $f$ on a closed interval $[a,b]$ we define the \textbf{upper
integral}, $U$, and \textbf{lower integral}, $L$ as
\begin{equation*}
U = \inf\left\{\int\limits_a^b s(x)dx\right\} ,~~
L = \sup\left\{\int\limits_a^b r(x)dx\right\}
\end{equation*}
where the inf and sup are over the set of all step functions $s$ such that
$s \ge f$ and the set of all step functions $r$ such that $r \le f$
respectively and we define the integral of a step function $s(x) =
\sum\limits_{j=1}^n c_j\chi_{[a_j,b_j]}(x)$ (the canonical representation)
to be $\int_a^b s(x) dx = \sum\limits_{j=1}^nc_j(b_j-a_j)$.(This is the
usual definition expressed in an unusual way. The integrals of the step
functions are usually called upper sums and lower sums.)
The function $f$ is \textbf{Riemann integrable} if $U = L$. and in that
case we call the common value the \textbf{Riemann integral} of $f$ over
$[a,b]$, denoted $\int_a^bf(x)dx$.
\item Of course one requirement for the Lebesgue integral is that any
Riemann integrable function should also be Lebesgue integrable, and that
the values of the two integrals should be the same. Another practical
requirement is that there should be enough Lebesgue integrable functions
that are not Riemann integrable to make it worthwhile to go to the trouble
of developing the Lebesgue integral.
\end{enumerate}
\end{rmk}
\begin{defn}\label{d:integral} ~ %87
\begin{enumerate}
\item If $s$ is a simple function with canonical representation
$s = \sum\limits_{j=1}^n c_j\chi_{E_j}$
(recall Def \mDref{d:simplefunction}) that vanishes outside a set of finite
measure, the integral of $s$ is
\begin{equation*}
\int s = \sum\limits_{j=1}^n c_j m(E_j).
\end{equation*}
\item If $E$ is any measurable set, the integral of $s$ over $E$ is
\begin{equation*}
\int_E s = \int s\chi_E.
\end{equation*}
\end{enumerate}
\end{defn}
\begin{rmk}%88
Of course we think of this as ``the signed area under the curve'' as usual.
One irritating fine point we need to deal with is to check that if we express
the simple function as a linear combination of characteristic functions in a
different way, then $\int s$ is also given by the corresponding sum.
\end{rmk}
\begin{pblm}\label{p:simplefuncint}%89
Suppose $s$ is a simple function that vanishes outside a set of finite
measure and $s = \sum\limits_{j=1}^nc_j\chi_{A_j}$ where the sets $\{A_j\}_{j=1}^n$
are pairwise disjoint (but several different $A_j's$ may carry the same value $c_j$).
Then $\int s = \sum\limits_{j=1}^n c_j m(A_j).$
\noindent (For any $c$ in the range of $s$, the canonical representation of $s$
includes $E_c = \cup\{A_j: c_j = c\}$. We know $m(E_c) = \sum\limits_{c_j = c} m(A_j).$)
\begin{proof}
For each $c_{j} = s(x)$ for some $x$ in the set of finite measure, let
$E_{j} = \cup\{ A_{i}: c_{i} = c_{j} \}$.
Therefore, there is a canonical representation of $s(x)$:
\begin{equation*}
s = \sum\limits_{j=1}^{m} c_{j}\chi_{E_j}
\end{equation*}
Where $E_{j} \cap E_{k} = \emptyset$ if $j \neq k$
(as they are unions of pairwise disjoint sets),
and each $c_{i}$ is distinct. Then applying the definition of the
integral of a simple function,
\begin{equation*}
\int s = \sum_{i=1}^{m} c_{i}m(E_{i})
\end{equation*}
For any individual $E_{i}$, the measure of $E_{i}$ is the sum of the measures
of the $A_{j}$ which make up the union of $E_{i}$. This is possible because all of
the $A_{j}$'s are pairwise disjoint, so countable subadditivity can be applied here.
Therefore
\begin{equation*}
c_{i}m[E_{i}] = c_{i}\sum_{k=1}^{l}m[A_{k}] .
\end{equation*}
This turns ( using Definition \ref{d:integral} ) into:
\begin{equation*}
\int s = \sum_{j=1}^{n}c_{j}m[A_{j}]
\end{equation*}
\end{proof}
\end{pblm}
\pagebreak
\begin{pblm}\label{p:simplefuncintislinear}%90
Suppose that $r$ and $s$ are simple functions that vanish outside a set of
finite measure and that $a$ and $b$ are real numbers.
\begin{enumerate}
\item $\int (ar + bs) = a\int r + b \int s.$
\item If $r \ge s$, then $\int r \ge \int s.$
\end{enumerate}
{\scriptsize{(If $s = \sum\limits_{j=1}^n c_j\chi_{E_j}$, $r = \sum\limits_{j=1}^m d_j\chi_{F_j}$ are
the canonical representations, consider the representations using all possible sets
$E_j \cap F_k$. For $(2)$, consider $r - s$.)}}
\begin{proof}~
\begin{enumerate}
\item Let $s = \sum\limits_{j=1}^nc_j\chi_{E_j},~ r = \sum\limits_{j=1}^md_j\chi_{F_j}$ be the canonical
representations for $r$ and $s$. Then let $\{G_k\}_{k=1}^{m\times n}$ be given by all of the
intersections $E_j \cap F_k$ (where some intersections can be empty).
Then we can re-write $s$ and $r$ as
\begin{equation*}
s = \sum\limits_{k=1}^{nm}c_j\chi_{G_k}~~~
r = \sum\limits_{k=1}^{nm}d_j\chi_{G_k}~~~
\end{equation*}
Where, as the $G_k$ are each a subset of one and only one $E_j$, and one $F_j$, so the $c_j$ and $d_j$
are not necessarily unique, but are the coefficients associated to the supersets $E_j$, $F_j$.
respectively. Then
\begin{equation*}
\begin{array}{rcl}
\int(ar + bs) &=& \int \left(a\sum\limits_{k=1}^{mn} d_k\chi_{G_k} +
b\sum\limits_{k=1}^{mn} c_k\chi_{G_k}\right)\\
&=& \sum\limits_{k=1}^{mn} (ad_k + bc_k) m(G_k)\\
&=& a\sum\limits_{k=1}^{mn} d_k m(G_k) + b\sum\limits_{k=1}^{mn} c_k m(G_k)\\
&=& a\int r + b \int s
\end{array}
\end{equation*}
\item If $r \ge s$, then consider $\int (r - s)$. From part (1), we know that this
is equal to $\int r - \int s$, and since $r \ge s$, then $r - s \ge 0$, and so
we can write $r - s$ as a sum of non-negative values, and so
$\int (r - s) = \int r - \int s \ge 0$, and so $\int r \ge \int s$.
\end{enumerate}
\end{proof}
\end{pblm}
\begin{rmk}%91
By the preceding problem and induction, if $\{A_j\}_{j=1}^n$ is any collection of
sets of finite measure, not necessarily disjoint, and if
$s = \sum\limits_{j=1}^n c_j\chi_{A_j}$, then $\int s = \sum\limits_{j=1}^n c_j m(A_j)$
so that the restriction above to pairwise disjoint sets is unnecessary.
\end{rmk}
\begin{pblm}\label{p:infinteqsupint}%92
Let $f$ be a bounded function defined on a measurable set $E$ with $m(E)$ finite. Then
\begin{equation*}
\inf\limits_{s\ge f}\int s = \sup\limits_{r \le f}\int r
\end{equation*}
if and only if $f$ is measurable. \\
{\scriptsize{(If $|f| \le M$ is measurable, partitions the range into $2n$ equal portions and use
this to define simple functions $r$ and $s$ with $r \le f \le s$. For the other
direction, let $\{r_n\}$, $\{s_n\}$ be sequences of simple functions whose integrals
approach the sup and inf. Then $\sup r_n\le f\le\inf s_n$, $\sup r_n$ and $\inf s_n$
are measurable, and you can show $m\{x: \sup r_n \neq\inf s_n\} = 0$. )}}
\begin{proof}
$(\Rightarrow): $
Note first that if $m(E) = 0$, then $f$ is measurable, as the set
$\{x \in E: f(x) < \alpha\}$ has measure 0 for any $\alpha$ and so is measurable.
Let $\{r_n\}$, $\{s_n\}$ be sequences of step functions such that
\begin{equation*}
\lim\limits_{n\to\infty} \int s_n = \inf ~~~ \& ~~~
\lim\limits_{n\to\infty} \int r_n = \sup
\end{equation*}
Now, since $r_n \le f \le s_m$ for all $n$ and $m$, then
\begin{equation*}
\sup\limits_{n}r_n \le f \le \inf\limits_{n}s_n
\end{equation*}
and for all $\epsilon > 0$, there exist integers $N$ and $M$ such that for all
$n \ge N$ and $m \ge M$,
\begin{equation*}
\left|\int r_n - \int f\right| < \frac{\epsilon}{2}m(E) ~~~ \text{ and } ~~~
\left|\int s_m - \int f\right| < \frac{\epsilon}{2}m(E)
\end{equation*}
So
\begin{equation*}
\left|\int s_p - \int r_p\right| < \epsilon \cdot m(E) ~~\forall~ p \ge max(M,N)
\end{equation*}
and by \mPref{p:simplefuncintislinear}, this implies that
\begin{equation*}
\left|\int (s_p - r_p)\right| < \epsilon \cdot m(E)
\end{equation*}
and since $s_p \ge r_p$ for all $p$, this is the same as
\begin{equation*}
\int (s_p - r_p) < \epsilon \cdot m(E)
\end{equation*}
Now, define $\tau - \epsilon ~\chi_E$. Then $\tau$ is a simple function with a
value of $\epsilon$ everywhere on $E$, and $0$ elsewhere. So, by
\mPref{p:simplefuncintislinear}(2),
\begin{equation*}
\int (s_p - r_p) < \int \tau = \epsilon \cdot m(E) ~ \implies ~ (s_p - r_p) < \tau
\end{equation*}
Therefore $s_p - r_p < \epsilon$ for all $x \in E$, and so, by \mPref{p:ext_real_val_seq}, $f$ is measurable.
\noindent $(\Leftarrow): $ let $f$ be measurable and bounded on $E \in \M$ where
$m(E)$ is finite, and let $|f| \le M$ for all $x \in E$. Then partition
$[-M, M]$ into $2n$ equal intervals for any $n$, so that
\begin{equation*}
E_j = \left[\left.-M + \frac{M}{n}(j-1), -M + \frac{M}{n}j\right.\right)
\end{equation*}
From \mPref{p:contalmostsimple}, define $r_n, s_n$ as
\begin{equation*}
\begin{array}{c}
s_n = \sum\limits_{j=1}^{2n} (-M + \frac{M}{n}j) \chi_{E_j}(f(x)) \\
r_n = \sum\limits_{j=1}^{2n} (-M + \frac{M}{n}(j-1)) \chi_{E_j}(f(x)) \\
\end{array}
\end{equation*}
Then
\begin{equation*}
\int(s_n-r_n) = \sum\limits_{j=1}^{2n}\left[\left(-M+\frac{M}{n}(j-1)\right)\frac{M}{n} +
\left(-M + \frac{M}{n}j\right)\frac{M}{n}\right]
= \frac{M^2}{n}
\end{equation*}
Now, since $M$ is fixed, as $n$ increases we have
\begin{equation*}
\frac{2M^2}{n} \ge \int s_n - \int r_n \ge \inf\limits{s\ge f}\int s - \sup\limits_{r\le f}\int r \ge 0
\end{equation*}
and so $\inf = \sup$.
\end{proof}
\end{pblm}
\begin{rmk} %93
The moral of the preceding problem is that, unlike the situation with the Riemann
integral, we do not need to consider both upper integrals and lower integrals because
we already have the correct class of functions, the measurable functions. Thus we can
say, forget about lower integrals and just approximate from above. (This is analagous
to not needing inner measure to help define Lebesgue measure.)
\end{rmk}
\begin{defn}\label{d:lebesgueintegral}%94
If $f$ is a bounded measurable function defined on a measurable set $E$ with $m(E)$
finite, then the (Lebesgue) integral of $f$ is
\begin{equation*}
\int f = \inf\limits_{s \ge f}\int s
\end{equation*}
where the inf is over the class of all simple functions $s$ with $s \ge f$. We sometimes
write $\int_E f$. If $E = [a, b]$, we write $\int_a^b f$.\\
If $A$ is a measurable subset of $E$, we define $\int_A f = \int f\chi_A$.
\end{defn}
\pagebreak
\begin{pblm}%95
Let $f$ be a bounded function defined on $[a,b]$. If $f$ is Riemann integrable
on $[a,b]$, then $f$ is measurable and the Riemann integral $R\int_a^b f =\int_a^b f$. \\
(A step function is a simple function.)
\begin{proof}
If $f$ is Riemann Integrable on $[a,b]$, then
\begin{equation*}
R\int_a^b f = \sup\left\{\int_a^b r\right\} = \inf\left\{\int_a^b s \right\} = \int_a^b f
\end{equation*}
\end{proof}
\end{pblm}
\begin{pblm}\label{p:lebesguelotsofuseful}%96
The Lebesgue integral has the following properties for bounded measurable functions defined
on a set $E$ of finite measure.
\begin{enumerate}
\item $\int_E (af + bg) = a\int_E f + b\int_E g$,
\item If $f \le g$ a.e., then $\int_E f \le \int_E g$,
\item If $f = g$ a.e., then $\int_E f = \int_E g$,
\item If $\alpha \le f(x) \le \beta$ for almost all $x \in E$, then
$\alpha ~m(E) \le \int_E f \le \beta~ m(E)$,
\item If $A$ and $B$ are disjoint measurable subsets of $E$, then
$\int_{A\cup B} f = \int_A f + \int_B$.
\end{enumerate}
{\scriptsize{(For (1) show $\int af = a\int f$ (easy) and $\int(f+g) = \int f + \int g$ (Requires some
manipulation of infs. You may also find \mPref{p:infinteqsupint} useful.) For (2) you can
show $f \le 0$ a.e. implies $\int_E f \le 0.$ (3), (4), and (5) follow from previous parts.)}}
\begin{proof}
~
\begin{enumerate}
\item If $\alpha > 0$ and $f$ is integrable, then
\begin{equation*}
\int \alpha f = \inf\limits_{s\ge\alpha f} \int s =
\underbrace{\alpha \inf\limits_{s/\alpha \ge f}\int \frac{s}{\alpha} =
\alpha \inf\limits_{s\ge f} \int s}_
{\text{since }\inf\text{ is over all simple functions }s} =
\alpha \int f
\end{equation*}
If on the other hand, $\alpha < 0$, then (using \ref{p:infinteqsupint}),
\begin{equation*}
\int \alpha f = \inf\limits_{s\ge\alpha f} \int s =
\alpha \sup\limits_{r/\alpha\le f}\int \frac{r}{\alpha} =
\alpha \int f
\end{equation*}
note that $\alpha = 0$ satisfies $\int \alpha f = \alpha \int f$ trivially.
Now, let $f, g$ both be integrable functions. For all $r \ge f$ and $s \ge g$,
\begin{equation*}
\begin{array}{rcl}
\int (f + g) &\le& \int (r + s) = \int r + \int s\\
\int (f + g) &\le&\inf\limits_{r\ge f, g \ge s} \int (r + s) =
\inf\limits_{r\ge f}\int r + \inf\limits_{s\ge g}\int s = \int f + \int g.
\end{array}
\end{equation*}
On the other hand, for all simple functions $r \ge f$ and $s \ge g$, by \mPref{p:infinteqsupint},
\begin{equation*}
\begin{array}{rcl}
\int f + \int g & \le & \int r + \int s = \int (r + s)\\
\int f + \int g & \le & \inf\limits_{r\ge f, s\ge g}\int (r + s)
\le \inf\limits_{r+s\ge f+g}\int (r + s)= \int (f + g).
\end{array}
\end{equation*}
\item if $f \le 0$ a.e. then $\int f = \inf\limits_{s\ge f}\int s \le \int 0$ since the simple function
$0 \ge f$ a.e. Therefore if $f \le g$ a.e., then $(f - g) \le 0$ a.e., and so
$\int( f - g) = \int f - \int g \le 0$, and so $\int f \le \int g$.
\item If $f = g$ a.e., then $0 = \int_E (f - g) = \int_E f - \int_E g$, and so $\int_E f = \int_E g$.
\item if $\alpha \le f(x) \le \beta$ for almost all $x \in E$, then by part 2,
\begin{equation*}\int_E \alpha \le \int_E f \le \int_E \beta\end{equation*} which is
\begin{equation*}\alpha \, m(E) \le \int_E f \le \beta \, m(E). \end{equation*}
\item if $A$ and $B$ are disjoint measurable subsets of $E$, then $f = f \chi_A + f\chi_B$ over
the set $A \cup B$, and so
\begin{equation*}
\int_{A\cup B} f =
\int_{A\cup B} (f\chi_A + f\chi_B) =
\int_{A\cup B} f\chi_A + \int_{A \cup B} f\chi_B =
\int_A f + \int_B f
\end{equation*}
\end{enumerate}
\end{proof}
\end{pblm}
\begin{rmk}%97
It follows from part (3) and the previous problem about measurability of functions equal
almost everywhere that changing the values of a function in a bounded way on a countable
subset of $E$ does not affect $\int_E f$. Thus the Dirichlet example of a non-Riemann
integrable function (the characteristic function of the set $\Q_0$ of rationals in $[0,1]$)
is not a problem here. We have $\int_0^1 \chi_{\Q_0} = 0$.
\end{rmk}
\begin{pblm}\label{p:intofsequenceeqlimint}%98
Let $\{f_n\}_{n=1}^\infty$ be a sequence of measurable functions on a measurable set $E$ of
finite measure such that for some $M > 0$, $|f_n|\le M$ a.e. for each $n$. If
$\lim\limits_{n\to\infty}f_n(x)$ exists a.e. on $E$, then the function defined by
$\lim\limits_{n\to\infty}f_n(x)$ is equal almost everywhere on $E$ to a bounded measurable
function $f$ and
\begin{equation*}
\int_E f = \lim\limits_{n\to\infty}\int_E f_n.
\end{equation*}
(Use \mPref{p:approxfunwithsteporsimple} or Egoroff's Thm \mPref{p:egoroff}).
\pagebreak
\begin{proof}
If $\lim\limits_{n\to\infty}f_n$ exists a.e. on $E$, then $f = \lim\limits_{n\to\infty} f_n$
is measurable by \mPref{p:ext_real_val_seq}, and $|f| \le M$ a.e.
Then by \mPref{p:egoroff}, for any $\epsilon > 0$, there is $A \subset E$ with $m(A) < \epsilon/4M$ and
$f_n \rightarrow f$ uniformly on $E \setminus A$. So
\begin{equation*}
\int_E (f - f_n) \le \int_E |f - f_n| = \int_{E \setminus A} |f-f_n| + \int_A|f-f_n|
\end{equation*}
and since $f_n\rightarrow f$ uniformly on $E \setminus A$, there is $N \in \Z$ such that
for all $n \ge N$,
\begin{equation*}
\int_E (f - f_n) < \int_E|f-f_n|\le \int_{E \setminus A} \epsilon/2m(E\setminus A) + \int_A|f-f_n|
\end{equation*}
and so
\begin{equation*}
\begin{array}{rclr}
\int_E(f-f_n) & < & \frac{\epsilon}{2m(E\setminus A)} \cdot m(E\setminus A) + \int_A|f-f_n| & \forall n \ge N\\
& < & \frac{\epsilon}{2} + \int_A 2M & \forall n \ge N\\
& < & \frac{\epsilon}{2} + m(A) ~ 2M & \forall n \ge N\\
& < & \frac{\epsilon}{2} + \frac{\epsilon}{4M} 2M & \forall n \ge N\\
\int_E(f-f_n) & < & \frac{\epsilon}{2} + \frac{\epsilon}{2} & \forall n \ge N\\
\int_Ef-\int_Ef_n & < & \epsilon & \forall n \ge N\\
\int_Ef-\lim\limits_{n\to\infty}\int_Ef_n & < & \epsilon & \\
\Rightarrow~~~ \int_E f & = & \lim\limits_{n\to\infty}\int_Ef_n
\end{array}
\end{equation*}
\end{proof}
\end{pblm}
\begin{rmk}~ %99
\begin{enumerate}
\item The preceding problem is a form of the Bounded Convergence Theorem-the first of
the important convergence theorems. It asks more than pointwise convergence (the
uniform boundedness of the functions), but much less than uniform convergence.
\item Now we'll extend things by dropping our conditions that the functions be bounded
and defined on a set of finite measure. We'll start by defining the integral for non-negative
functions only, and then writing an arbitrary function as a linear combination of these. The
idea for non-negative functions is to take the sup over all bounded functions non-zero on a set
of finite measure that are below the given function.
\end{enumerate}
\end{rmk}
\begin{defn}\label{d:thehundred}%100
Let $f$ be a non-negative measurable function on a measurable set $E$. Then we define
\begin{equation*}
\int_E f = \sup\limits_{h\le f}\int_E h
\end{equation*}
where the sup is over all bounded non-negative measurable functions $h \le f$ such that
$m\{x \in E: h(x) \neq 0\} < \infty$ and we interpret $\int_E h$ as
$\int_{\{x\in E:h(x)\neq0\}}h$.
\end{defn}
\begin{pblm}\label{p:conditionsnonnegmeasu}%101
If $f$ and $g$ are non-negative measurable functions defined on a measurable set $E$, then
\begin{enumerate}
\item $\int_E \alpha f = \alpha \int_E f$ for any $\alpha \ge 0$,
\item $\int_E(f+g) = \int_E f + \int_E g$,
\item If $f \ge g$ a.e. then $\int_E f \ge \int_E$. In particular, if
$f \ge 0$ a.e. then $\int_E f \ge 0$.
\end{enumerate}
\begin{proof}
~
\begin{enumerate}
\item If $\alpha = 0$, then $\int_E \alpha f = \int_E 0 = 0 = 0\int_E f = \alpha \int_E f$.
Now assume $\alpha > 0$. Then
$\int_E \alpha f = \sup\limits_{h\le \alpha f}\int h$, and since this is over all
bounded measurable functions $h\le f$. Then since $\alpha > 0$, taking the supremum
over $h \le \alpha f$ is the same as taking the supremum over $h / \alpha \le f$.
Thus this becomes
\begin{equation*}\sup\limits_{h/\alpha \le f} \int \alpha \frac{h}{\alpha} = \sup\limits_{h/\alpha\le f} \alpha \int h/\alpha = \sup\limits_{h\le f} \alpha \int h\end{equation*}
\item $\int_E (f + g) \ge \int(h + k) = \int h = \int k$ for all $h, k \le f, g$ respectively.
Therefore
\begin{equation*}\int_E (f + g) \ge \sup\int_E h + \sup\int_E g = \int_E f + \int_E g.\end{equation*}
Also, $\int_E f + \int_E g \ge \int_E h + \int_E k = \int_E(h + k)$ for all $h, k \le f, g$ respectively.
So $\int_E f + \int_E g \ge \sup\int_E(h+k)$.
Thus \begin{equation*}\int_E f + \int_E g = \int_E (f + g).\end{equation*}
\item If $f \ge 0$ a.e., then for any non-negative $h \le f$, let $h_f = min\{f, h\}$ and $h_g = h - h_f$.
Thus $h_f$ is non-negative (as the minimum of two non-negative functions), and $h_g$ is also non-negative since
it is bounded below by $f - f$ whenever $f \le h$ and $f - h$ whenever $h < f$.
Note that $h_g + h_f = h$, and $\int_E f = \sup\limits_{h\le f}\int_E h = \sup\limits_{h\le f}\int h_g+h_f$.
and since both $h_g$ and $h_f$ are bounded, non-negatice and measurable and vanish outside of
$A = \{x: h(x) \neq 0\}$ which has finite measure, then by \mPref{p:lebesguelotsofuseful}, the integral
is non-negative. Thus
\begin{equation*}
\int_Ef = \sup\limits_{h\le f}\int_Eh_g+h_f \ge 0
\end{equation*}
and this, together with the additivity of part (2) gives us for any non-negative measurable $g \le f$,
$\int_E g \le \int_E f$.
\end{enumerate}
\end{proof}
\end{pblm}
\pagebreak
\begin{pblm}\label{p:fatou}%102
Let $\{f_n\}_{n=1}^\infty$ be a sequence of non-negative measurable functions on a
measurable set $E$ such that $f(x) = \lim\limits_{n\to\infty}f_n(x)$ exists for almost
all $x \in E$. Then $f$ is measurable and
\begin{equation*}
\int_E f \le \lim\inf\int_E f_n.
\end{equation*}
\begin{proof}
For any $h \le f$ s.t. $h$ vanishes outside a set $A$ of finite measure,
let $h_n = min\{h, f_n\}$. %Each $h_n$ is measurable by \mPref{p:minmaxmeasurable}.
Then since $\lim\limits_{n\to\infty} f_n = f$ a.e.
for any $\epsilon > 0$, there is $N \in \Zp$ such that for all $n \ge N$,
$|f_n - f| < \epsilon$. Consider the $N \in \Zp$ such that
$|f_n - f| \le |h - f|$ whenever $n \ge N$. Then
since $f_n \le f$ and $h \le f$, and since $|f_n - f| \le |h - f|$,
\begin{equation*}
h_n = min\{h, f_n\} = h ~~~ \forall n \ge N
\end{equation*}
Thus $\lim\limits_{n\to\infty}h_n = h$ a.e.. Therefore by \mPref{p:intofsequenceeqlimint},
$ \int_E h = \lim\limits_{n\to\infty}\int_E h_n $
and so since for all $n$, $h_n \le f_n$, we have
\begin{equation*}
\int_E h = \lim\limits_{n\to\infty}\int_E h_n \le \lim\inf\int_E f_n
\end{equation*}
Therefore
\begin{equation*}
\int_E f = \sup\limits_{h\le f}\int_E h \le \lim\inf\int_E f_n
\end{equation*}
\end{proof}
\end{pblm}
\marginnote{Think about $f_n(x) = \chi_{[n,n+1]}(x)$. The limit $f$ is just the zero function,
but each $f_n$ has integral equal to $1$.}
\begin{rmk}%103
The preceding problem is known as Fatou's Lemma. You should be sure that you know of an
example where equality does not hold.
\end{rmk}
\begin{pblm}\label{p:mct}%104
Let $\{f_n\}_{n=1}^\infty$ be a non-decreasing sequence of non-negative measurable functions
on a measurable set $E$, and let $f(x) = \lim\limits_{n\to\infty}f_n(x)$ for each $x \in E$.
($f(x) = \infty$ is allowed.) Then
\begin{equation*}
\int_E f = \lim\limits_{n\to\infty}\int_Ef_n
\end{equation*}
where it is possible that both sides of the equation are $+\infty$.
\begin{proof}
%WTS: $\lim\limits_{n\to\infty}\int_E f_n \le \int_E f$ and $\lim\limits_{n\to\infty}\int_E f_n \ge \int_E f$.
We have $f_n \le f$ for all $n$, and so
\begin{equation*}
\lim\limits_{n\to\infty}\int_E f_n \le \int_E f
\end{equation*}
On the other hand, using Fatou's Lemma, we have
$%\begin{equation*}
\int_E f \le \lim\inf \int_E f_n = \lim\limits_{n\to\infty} \int_E f_n
$ %\end{equation*}
and so
\begin{equation*}
\int_E f = \lim\limits_{n\to\infty}\int_E f_n
\end{equation*}
\end{proof}
\end{pblm}
\begin{rmk}%105
This is the monotone Convergence Theorem. It and Fatou's Lemma are the principal convergence
theorems for non-negative functions.
\end{rmk}
\begin{pblm}\label{p:veryuseful}%106
~
\begin{enumerate}[(a)]
\item Let $\{f_k\}_{k=1}^\infty$ be a sequence of non-negative measurable functions on a
measurable set $E$. Then
\begin{equation*}
\int_E\left(\sum\limits_{k=1}^\infty f_k\right) =
\sum\limits_{k=1}^\infty\left(\int_Ef_k\right).
\end{equation*}
\item Let $f$ be a non-negative measurable function on a measurable set $E$, and let
$\{A_n\}_{n=1}^\infty$ be a sequence of mutually disjoint measurable subsets of $E$.
Then
\begin{equation*}
\int_{\bigcup\limits_{n=1}^\infty A_n}f = \sum\limits_{n=1}^\infty\int_{A_n}f.
\end{equation*}
\end{enumerate}
\begin{proof}~
\begin{enumerate}[(a)]
\item Define $g_n = \sum\limits_{k=1}^nf_k$. Then $\{g_n\}$ is a nondecreasing
sequence and so by \mPref{p:mct},
\begin{equation*}
\int_E\lim\limits_{n\to\infty}g_n = \lim\limits_{n\to\infty}\int_Eg_n
\end{equation*}
and now, we will show that $\int_E\sum\limits_{k=1}^nf_k = \sum\limits_{k=1}^n\int_Ef_k$
by induction.
\noindent Base case: $\int_E (f + g) = \int_Ef + \int_Eg$ by \mPref{p:lebesguelotsofuseful}
\noindent Induction step: Assume that the hypothesis is true for some $n-1$, and then
\begin{equation*}
\begin{array}{rcl}
\int_E\sum\limits_{k=1}^nf_k &=& \int_E\left[\sum\limits_{k=1}^{n-1}f_k + f_n\right] \\
&=& \int_E\sum\limits_{k=1}^{n-1}f_k+\int_Ef_n
\end{array}
\end{equation*}
So
\begin{equation*}
\int_E\sum\limits_{k=1}^\infty f_k = \sum\limits_{k=1}^\infty\int_Ef_k
\end{equation*}
\item Let $A = \bigcup\limits_{n=1}^\infty A_n$. Then
\begin{equation*}
\begin{array}{ccc}
\int_Af & = \int_A\sum\limits_{n=1}^\infty f\chi_{A_n} = & \sum\limits_{n=1}^\infty\int_Af\chi_{A_n}\\
\verteq & & \verteq \\
\int_{\bigcup\limits_{n=1}^\infty A_n}f & = & \sum\limits_{n=1}^\infty\int_{A_n}f.
\end{array}
\end{equation*}
\end{enumerate}
\end{proof}
\end{pblm}
\begin{pblm}\label{p:nonnegmeas_infty}%107
Let $f$ and $g$ be non-negative measurable functions on a measurable set $E$ such that
$f(x) \ge g(x)$ on $E$. If $\int_E f < \infty$, then $\int_E g < \infty$,
$\int_E(f-g) < \infty$, and
\begin{equation*}
\int_E(f-g) = \int_Ef - \int_Eg.
\end{equation*}
\begin{proof}~
\begin{itemize}
\item If $\int_E f < \infty$, then by \mPref{p:conditionsnonnegmeasu},
\begin{equation*}
\int_Eg \le \int_E f < \infty ~~ \Rightarrow ~~ \int_Eg < \infty
\end{equation*}
\item Since $f \ge g$ on $E$, then $0 \le f - g \le f$ on $E$, and so
\begin{equation*}
\int_E (f - g) \le \int_E f < \infty
\end{equation*}
\item
\begin{equation*}
\begin{array}{rcl}
\underbrace{\int_E (f + g) + \int_Eg}_{\text{both non-negative}} =
\int_E\left[(f - g) + g\right] = \int_Ef & \Rightarrow & \int_Ef =
\int_E(f-g)+\int_Eg\\
& \Rightarrow & \int_Ef - \int_Eg = \int_E(f - g)
\end{array}
\end{equation*}
\end{itemize}
\end{proof}
\end{pblm}
\begin{pblm}%108
Let $f$ be a non-negative measurable function on a mesaurable set $E$ such that
$\int_E f < \infty$. Then for each $\epsilon > 0$ there is $\delta > 0$ so that
for every $A \subset E$ with $m(A) < \delta$, it is the case that $\int_Af<\epsilon$.
\begin{proof}
Assume not, then for some $\epsilon > 0$, $\forall \delta > 0$ there are
$A \subset E$ with $m(A) \le \delta$ such that
\begin{equation*}
\int_A f \ge \epsilon.
\end{equation*}
Let this $\epsilon > 0$, then there is a sequence $\{A_n\}$ with
$m(A_n) < \frac{1}{2^n}$ and $\int_{A_n} f \ge \epsilon$.
Let $B_n =\bigcup\limits_{k=n}^\infty A_k$, and define $f_n = f - f\chi_{B_n}$.
Then $f_n \rightarrow f$ (obv), and so
then $f_n$ is a non-decreasing sequence of non-negative ftns (that are measurable),
Now,
\begin{equation*}
\begin{array}{rcl}
\int_E (f - f_n) & = & \int_E f - \int_E f_n \\
& = & \int_E f - \int_E (f - f\chi_{B_n}) \\
& = & \int_E f - \int_E f + \int_E f\chi_{B_n} = \int_E f\chi_{B_n} = \int_{B_n} f
\end{array}
\end{equation*}
and so
\begin{equation*}
\lim\limits_{n\to\infty} \int_E (f - f_n) = \lim\limits_{n\to\infty} \int_{B_n} f \ge \epsilon > 0
\end{equation*}
Which is a contradiction, as $f_n \rightarrow f$.
\end{proof}
\end{pblm}
\begin{rmk}%109
This looks like a sort of continuity condition. As the proof demonstrates, it
really says that an integrable function cannot have ``delta function''
parts-places of size zero but positive area (or positive mass if you prefer to
think of $f$ as representing density).
\end{rmk}
\begin{rmk}%110
Let $f$ be an extended real-valued function. The positive and negative parts of
$f$, $f_+ = max\{f, 0\}$ and $f_- = max\{-f, 0\}$ can be defined as extended
real-valued functions just as in \mDref{d:pos_neg_fun} with the properties already
developed. Notice that for nay $x$, at most one of $f_+$ and $f_-$ is different
from 0, and that, as before, $f = f_+ - f_-$ and $|f| = f_+ + f_-$.
\end{rmk}
\begin{defn}%111
~
\begin{enumerate}
\item A non-negative extended real-valued measurable function $f$ defined on a
measurable function $f$ defined on a measurable set $E$ is \textbf{integrable over}
$E$ if $\int_Ef<\infty$.
\item An extended real-valued measurable function $f$ defined on a measurable
set $E$ is \textbf{integrable over} $E$ if both its positive part and its
negative part, $f_+$ and $f_-$, are integrable over $E$. In that case, we define
\begin{equation*}
\int_E f = \int_Ef_+-\int_Ef_-.
\end{equation*}
We denote the set of all functions integrable over $E$ by $L^1(E)$.
\end{enumerate}
\end{defn}
\begin{rmk}%112
~
\begin{enumerate}
\item An integrable extended real-valued function $f$ must have finite values
almost everywhere.
\item A measurable function $f$ on $E$ is integrable over $E$ if and only if
$|f| = f_++f_-$ is integrable over $E$. Thus $L^1(E)$ is usually defined as the
set of all measurable functions on $E$ such that $\int_E|f|<\infty$.
\end{enumerate}
\end{rmk}
\begin{pblm}\label{p:conditionsmeasu}%113
If $f$ and $g$ are integrable on $E$, and if $\alpha$, $\beta$ are real
numbers, then
\begin{enumerate}[(a)]
\item $\int_E(\alpha f + \beta g) = \alpha \int_Ef + \beta\int_Eg$.
\item if $f \le g$, then $\int_Ef \le \int_Eg$,
\item if $A$ and $B$ are disjoint measurable subsets of $E$, then
$\int_{A\cup B}f = \int_Af + \int_Bf$.
\end{enumerate}
\begin{proof} ~
\begin{enumerate}[(a)]
\item if $|f|=f_++f_-$, then, if $\alpha >= 0$,
\begin{equation*}
\int_E\alpha f = \int_E\alpha(f_+-f_-) = \int_E[\alpha f_+ - \alpha f_-]
\end{equation*}
and by \mPref{p:nonnegmeas_infty}, this is
\begin{equation*}
\begin{array}{rcl}
\int_E\alpha f = \int_E[\alpha f_+ - \alpha f_-] & = & \int_E\alpha f_+ - \int_E \alpha f_- \\
& = & \alpha\int_E f_+ - \alpha\int_E f_- \\
& = & \alpha\left[\int_Ef_+ - \int_Ef_-\right]\\
& = & \alpha\int_Ef.
\end{array}
\end{equation*}
If on the other hand, $\alpha < 0$, then
\begin{equation*}
\begin{array}{rcl}
\int_E \alpha f = \int_E (-\alpha) (-f) & = & (-\alpha) \int_E (-f) \\
& = & -\alpha \left[\int_E f_- - \int_E f_+\right]\\
& = & -\alpha \int_E f_- + \alpha \int_E f_+\\
& = & \alpha \int_E f_+ - \alpha \int_E f_-\\
& = & \alpha \int_E f.
\end{array}
\end{equation*}
Now, to show that $\int_E(f+g) = \int_Ef+\int_Eg$,
\begin{equation*}
\begin{array}{rcl}
\int_E(f+g) = \int_E[f_++g_+-f_--g_-] &=& \int_Ef_++\int_Eg_+-\int_Ef_--\int_Eg_- \\
& = & \int_Ef_+-\int_Ef_-+\int_Eg_+-\int_Eg_- \\
& = & \int_E(f_+-f_-) + \int_E(g_+-g_-) \\
& = & \int_Ef + \int_Eg.
\end{array}
\end{equation*}
\item If $g \ge f$, then $g - f \ge 0$, which (using the first part of this problem) implies that
\begin{equation*}
0 \le \int_E(g - f) = \int_Eg - \int_E f ~~\Rightarrow~~ \int_Eg \ge \int_Ef
\end{equation*}
\item
\begin{equation*}
\int_{A\cup B} f = \int_{A\cup B} \left(f \chi_A + f\chi_B\right) =
\int_{A\cup B} f\chi_A + \int_{A\cup B} f\chi_B = \int_A f + \int_B f
\end{equation*}
\end{enumerate}
\end{proof}
\end{pblm}
\pagebreak
\begin{pblm}\label{p:lebesguedominatedconvergence}%114
Let $g$ be a non-negative integrable function on $E$, and let $\{f_n\}_{n=1}^\infty$
be a sequence of measurable functions such that $|f_n| \le g$ a.e. on $E$ for each
$n$. If $f_n(x) \rightarrow f(x)$ for almost all of $x \in E$, then
\begin{equation*}
\lim\limits_{n\to\infty}\int_Ef_n = \int_Ef.
\end{equation*}
\begin{proof}
If $|f_n| \le g$ a.e. for all $n$, then
$\{g - f_n\}_{n=1}^\infty$ and $\{g + f_n\}_{n=1}^\infty$ are both non-negative a.e.
and so by Fatou's Lemma (\mPref{p:fatou}),
\begin{equation*}
\begin{array}{rcl}
\int_E(g+f) & \le & \lim\inf\int_E(g+f_n) \\
\int_Eg + \int_E f & \le & \lim\limits_{n\to\infty}\int_E(g+f_n)\\
\int_Eg + \int_Ef & \le & \int_Eg + \lim\limits_{n\to\infty}\int_Ef_n\\
\int_Ef & \le & \lim\limits_{n\to\infty}\int_Ef_n
\end{array}
\end{equation*}
and similarly,
\begin{equation*}
\begin{array}{rcl}
\int_E(g-f) & \le & \lim\inf\int_E(g-f_n) \\
\int_Eg - \int_E f & \le & \lim\limits_{n\to\infty}\int_E(g-f_n)\\
\int_Eg - \int_Ef & \le & \int_Eg - \lim\limits_{n\to\infty}\int_Ef_n\\
-\int_Ef & \le & -\lim\limits_{n\to\infty}\int_Ef_n\\
\int_Ef & \ge & \lim\limits_{n\to\infty}\int_Ef_n
\end{array}
\end{equation*}
\end{proof}
\end{pblm}
\begin{rmk}%115
The preceeding result is the Lebesgue Dominated Convergence Theorem. It is perhaps the
most often used of the convergence theorems. Note that our first convergence theorem
\mPref{p:intofsequenceeqlimint}, is a special case.
\end{rmk}
\begin{rmk}%116
Note that $f$ being Lebesgue integrable over a set $E$ is not the same as $f$ having an
improper Riemann integral over $E$. For instance, $\int_0^\infty \frac{\sin x}{x}dx$
exists, as you may see by observing that if we set $a_n = \int_{(n-1)\pi}^{n\pi}\frac{\sin x}{x}dx$
then $\int_0^\infty\frac{\sin x}{x}dx = \sum\limits_{n=1}^\infty a_n$ converges by the
Alternating Series Test. However the integral of the positive part of $\frac{\sin x}{x}$ is
infinite (and the integral of the negative part also) since $|a_n|\approx \frac{k}{n}$.
In other words, $\sum\limits_{n=1}^\infty a_n$ converges conditionally, but not absolutely.
$f$ being Lebesgue integrable corresponds to absolute convergence-convergence via cancellation
is not allowed. This makes working with Lebesgue integrable functions much simpler, at the
expense of making the class of integrable functions somewhat smaller.
\end{rmk}