-
Notifications
You must be signed in to change notification settings - Fork 1
/
aghion2021.jl
2105 lines (1691 loc) · 72.8 KB
/
aghion2021.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.18.0
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ fc9e304e-850c-11ec-24dd-3bf8c6e392a3
using Distributions, PlutoUI, Symbolics, Latexify, DataFrames, Plots, PlotThemes, ImageShow, ImageIO, FileIO
# ╔═╡ c3a34ad8-3405-4e90-8460-f06234f91610
md"""
# [Environmental Preferences and Technological Choices: Is Market Competition Clean or Dirty?](https://scholar.harvard.edu/aghion/publications/environmental-preferences-and-technological-choices-market-competition-clean-or)
by Aghion, Bénabou, Martin, and Roulet (2021)
*Presentation by* Mason Hayes and Martí Puig
"""
# ╔═╡ d21e9e92-f812-43d7-890e-ec140bff80ed
PlutoUI.TableOfContents(aside = false)
# ╔═╡ b3938d08-cfcb-4021-a847-3fe6fbd76cbb
md"""
## Abstract
> We investigate the effects of consumers’ environmental concerns and market competition on firms’ decisions to innovate in “clean” technologies. Agents care about their consumption and environmental footprint; firms pursue greener products to soften price competition. Acting as complements, these forces determine R&D, pollution, and welfare. We test the theory using panel data on patents by 8,562 automobile-sector firms in 41 countries, environmental willingness-topay, and competition. As predicted, **exposure to prosocial attitudes fosters clean innovation, all the more so where competition is strong**. Plausible increases in both together can spur it as much as a large fuel-price increase.
"""
# ╔═╡ 851053a7-c31b-4722-a443-a8e212516359
md"""
## Exploring the theoretical model
"""
# ╔═╡ e5f8040c-ae07-47a9-b580-4e1ab0465f66
@variables t y k_f γ δ c z κ # declare some variables
# ╔═╡ 1886e820-9d9f-4a37-9fbc-06c67f055583
md"""
- time t, output y, cumulative investments $k_f$
- consumer environmental preferences $δ$
- size of a leading-edge environmental innovation $γ$
- marginal cost of labor $c$
- $z$ the investment flow per period = the probability of successful innovation
- $κ$ some measure of ideas/managerial capacity that makes innovation more costly
"""
# ╔═╡ 037fc3bd-2042-4d5a-943c-289a983909c6
md"""
### Variable definitions
**Emissions**: The production or consumption of one unit of good with environmental quality $q$ generates $x = 1/q$ units of polluting emissions.
**Quality** for a firm $f$ that has the cumulative number of investments $k_f ∈ N$ is given by:
"""
# ╔═╡ 1e8cbf03-ae43-43df-82ee-1e7bcdb1663f
begin
q_f((γ, k_f)) = γ^k_f
q_f((γ, k_f))
end
# ╔═╡ 13922ce5-7d66-43dd-a813-0735f31c7173
md"""
Firms choose to invest or not in each period. In any period, firms can copy the other firm's *previous* technologies. Let's assume a duopoly with firms A and B.
Then, in any period $t$, the maximum of $| k_A - k_B |$ must be less than or equal to 1. Since, if it was greater than 1, one of the firms could have copied a better technology than the one it has.
"""
# ╔═╡ b0a2b5d0-d168-4339-8177-4299f2480293
md"""
#### How does quality change with a change in $\gamma$ or $k_f$?
"""
# ╔═╡ cde9049d-224b-4312-bc9c-09eac980098e
md"""
We can differentiate this function wrt. to $\gamma$ or $k_f$ to see how changes in preferences or cumulative investments affect quality
"""
# ╔═╡ 6892aa11-e06c-4a7d-aa6f-f66e8bb61b3d
q_f′(a) = Symbolics.derivative(q_f((γ, k_f)), a; simplify = true);
# ╔═╡ bb213912-cda5-4bf5-9253-69d70f226c65
q_f′(k_f)
# ╔═╡ aa9c1bc2-ae3a-4004-8e63-5300b3189e06
q_f′(γ)
# ╔═╡ 9c7bda65-0996-41d4-a26b-06f290823aae
md"""
So we see that
``\dfrac{\delta q_f}{\delta k_f}= \gamma^{k_{f}} \log\left( \gamma \right)``, and ``\dfrac{\delta q_f}{\delta \gamma} = \gamma^{(k_{f} - 1)} k_f``, which are both greater than 0.
"""
# ╔═╡ c3bd0b54-adef-4c90-a058-2dbb6b014663
md"""
#### Costs
To produce *1 unit of quality-adjusted output*, a firm must use the following units of labor (with wage normalized to 1):
> Note that we assume **labor** is the only input.
"""
# ╔═╡ 701d66fb-55fc-419f-8c76-91fdf4ed7739
begin
L((c, γ, k_f, δ)) = γ^(-k_f * δ) * c;
L′(a) = Symbolics.derivative(L((c, γ, k_f, δ)) , a);
end;
# ╔═╡ 174ded77-b0e1-4b5a-ae5e-f92887abd80b
L((c, γ, k_f, δ))
# ╔═╡ 5061f3ed-4626-4d21-a087-51e2cfae452d
dLdk_f = L′(k_f) < 0
# labor cost per unit of quality-adjusted output is decreasing in cumulative number of clean innovations
# ╔═╡ 80ba815c-fc9a-49b0-9f43-7b72f7f0496d
md"""
### How do consumers value product quantity & quality?
"""
# ╔═╡ 9e0cc16c-b199-4ff7-b087-1bf00754b9b5
md"""
With $y$ being the quantity produced and $q$ the quality of the product, consumers value a quantity-quality combination of that product at $y q^δ$.
Revenue per sector is normalized to 1.
"""
# ╔═╡ ef7c1d16-d266-47a1-9e7e-21c9a4671e97
u_i((y,a)) = y * q_f((γ, (k_f+a) * δ));
# ╔═╡ a9918e58-0eb0-4fd7-a3dc-584c9a92ccf5
md"""
## The choice to invest
"""
# ╔═╡ 60b97c59-7631-4e5e-b5b6-a97c4cee0653
md"""
For any $z \leq 1$, investing $\kappa z^2/2$ units of labor leads to a probability $z$ of inventing a technology that is $\gamma$ times cleaner; and a $1 - z$ probability of no progress. This means that investing z leads to quality:
"""
# ╔═╡ d74fec10-600d-4c5a-8cf3-3e78d926694b
begin
Invest((z)) = z * q_f((γ, k_f+1)) + (1-z) * q_f((γ, k_f));
Invest((z))
end
# ╔═╡ f4fca4ce-1fd4-4bfa-8142-0dbd544e7fa1
Invest′(a) = Symbolics.derivative(Invest((z)), a, simplify = true);
# ╔═╡ 84c4350b-8330-4479-9933-d3751d095aaf
Invest′(γ) # quality is increasing in the size of the leading-edge innovation γ
# ╔═╡ 1bb06086-97a6-4e7f-a103-a4acd0a68803
Invest′(k_f)
# ╔═╡ cc1a7094-eab8-443e-bd44-b83914ef1015
md"""
## Consider a duopoly with firms A and B.
And consider an *unleveled sector* where, for example, $k_A = k_B + 1$ which means that firm A has invested $\kappa z^2 /2$ units of labor to produce a technology that is $\gamma$ times cleaner.
Now, firm A has a product that is more valued by consumers.
"""
# ╔═╡ b49dfe41-ca19-4d79-bccd-cb631c25385d
md"""
Since we know that consumers value firm A's good at $y q^δ = y \gamma^{\delta (k_A)}$, that firm A can capture all demand (by assumption), and that the firm has cost $c$, it can engage in *limit pricing* because it has the following quality advantage over firm B:
"""
# ╔═╡ 1b70417c-e88b-4266-9242-fc2998f33906
(q_f((γ, k_f + 1))/q_f((γ, k_f)))^δ
# ╔═╡ f003f65c-840a-4ae8-994e-5d101eca5c55
md"""
> Note that this quality advantage just equals $γ^δ$.
### Limit pricing
The firm with the lowest price/quality ratio gets all demand and, because of competitive pressure, chooses price so that entry is not profitable. Since it has quality advantage $\gamma^\delta$ compared to its competitor, it can engage in *limit pricing* and choose the monopoly price:
"""
# ╔═╡ c5cebadb-f9ae-4760-b52d-ed7d93173ce8
pᴹ = γ^δ*c
# ╔═╡ 84810e98-0a4e-424c-be47-7b77c9cf4ccb
md"""
Demand is:
"""
# ╔═╡ 06f077cc-129c-4577-87d1-89acc387ff9e
yᴹ = 1 / pᴹ
# ╔═╡ 67bc75f5-28df-44f6-97e1-944c50be7b35
md"""
Profits are:
"""
# ╔═╡ ae6f27be-c8cb-4abf-a3ba-6e8d84fa2afe
πᴹ = yᴹ*(pᴹ - c) |> expand |> simplify
# ╔═╡ 5c0da089-c726-498b-9387-0e7de160fd4f
dπᴹd(a) = Symbolics.derivative(πᴹ, a);
# ╔═╡ d1c1168a-fb09-4b12-85af-e713c951cd97
dπᴹd(γ) |> simplify
# profits are increasing in γ, the size of the leading-edge environmental innovation
# ╔═╡ 58be1c37-928d-4dce-8764-4f661d757351
dπᴹd(δ) |> simplify
# and profits are increasing in consumer preferences for green technologies
# ╔═╡ 8c0de67b-30c8-4726-be85-d7f76a5d37fe
md"""
## Level of competition
"""
# ╔═╡ b326f0e1-60d9-481b-b860-1c6bb901e2e8
md"""
$\Delta$ is a measure of the level of competition between the two firms. A higher $\Delta$ implies that each firm's profit when in a duopolistic market is approaching zero (as $\Delta \rightarrow 1$, then $\pi_D \rightarrow 0$. And conversely, as $\Delta$ approaches $\frac{1}{2}$, then the two firms become closer to splitting evenly the monopoly profits, which indicates perfect collusion (lack of competition).
"""
# ╔═╡ fa332e36-0e84-4867-ae8b-3682769e9a3f
π_D(Δ) = (1 - Δ) * πᴹ;
# ╔═╡ 685cbb78-1aed-4b0f-9447-dae359f9a556
p(Δ) = c / (1 - 2*π_D(Δ));
# ╔═╡ 2a76d08a-f383-435c-81f9-849e2143e52a
output(Δ) = 1/p(Δ);
# ╔═╡ bce0b40f-1fde-42e1-ab34-b31e1b80846d
md"""
Duopoly **profits** | Δ =
"""
# ╔═╡ cac3312d-f956-48da-b190-13c494b31d45
md"""
Duopoly **price** | Δ:
"""
# ╔═╡ 7feb16f3-2337-47bf-b97b-2fa935c37466
md"""
Duopoly **output** | Δ:
"""
# ╔═╡ e34d470e-4a14-4aca-8b28-1f23d332eaec
md"""
## Escaping competition through clean innovation
"""
# ╔═╡ 8d13949d-8188-48df-98ae-e9638b7f917f
md"""
When the sector is *leveled* -- when $k_A = k_B$ -- only one of the two firms is given the opportunity to innovate in each period. $\forall z$ s.t. $0 \leq z \leq 1$, the cost of innovation is $\kappa z^2 /2$ and leads to monopoly profits with probability $z$.
So, the firm solves the following maximization problem:
"""
# ╔═╡ 2bdcaa58-fcce-4edb-8cf1-71d388699e7d
md"""
``\max_{z ∈ [0,1]} \{z π^M + (1-z) π_D(Δ) - κz^2 /2\}``
"""
# ╔═╡ 877190a3-2024-4ef0-bda7-7081d6c145fb
md"""
Let's let Julia solve this for us:
"""
# ╔═╡ 20c63144-8102-4204-8b0a-f3e861a50ceb
md"""
Notice that the optimal z, denoted by $\hat z$, is just the difference in a firm's monopoly profit and duopoly profit divided by $\kappa$, but can never exceed 1.
"""
# ╔═╡ 214c6ce1-fd94-460c-8a46-d150e4cc85be
md"""
Simplifying, we can see that $\hat z$ can be written as:
"""
# ╔═╡ eccbf170-1ee3-49fa-8ad3-4f407e86df1d
I(Δ) = Δ*πᴹ/κ # define investment flow
# the investment flow per period is just z(Δ);
# ╔═╡ b2c82550-c3ed-4804-847f-63cc630bf5f8
md"""
## Aggregate flow of investments per period
The flow of investments per period is just the proportion of sectors where innovation will occur:
"""
# ╔═╡ 755a0794-e085-4419-b9fd-68062367b8da
md"""
### Per-period investment is increasing in Δ and δ
#### and the two forces *complement each other*
"""
# ╔═╡ b2c953cf-eb33-45e5-81a5-2474cde70082
md"""
> Recall that $Δ$ is the measure of the level of competition, and $δ$ is a measure of the strength of consumers' social-responsibility concerns
"""
# ╔═╡ ee924789-7648-494c-9bd6-e749d204cf95
@variables Δ;
# ╔═╡ 9090cf3a-5505-4f0d-8876-b39de08bc5f0
π_D(Δ) |> simplify
# ╔═╡ 076e8d22-9bad-41d1-805a-8eff7a3f8789
p(Δ) |> simplify
# ╔═╡ 85db7a2f-6818-4460-be8f-fe5755f9dbe8
output(Δ) |> simplify
# ╔═╡ c188679c-c689-4b84-82a7-94872c4ff4f2
dπdz = Symbolics.derivative(z*πᴹ + (1-z)*π_D(Δ) - κ*z^2 /2, z)
# ╔═╡ daca5c07-366d-44bb-bfd4-37528000768c
ẑ = Symbolics.solve_for(dπdz ~ 0, z)
# ╔═╡ 39ec2265-f90a-4f30-aa3f-20e0814f7afb
ẑ |> simplify == Δ*πᴹ/κ
# ╔═╡ 70940ee4-b6cf-4783-acfd-3277b1252daa
I(Δ) |> expand |> simplify
# ╔═╡ 4376cf9e-5239-4174-92e1-89e081da4f37
I′(a) = Symbolics.derivative(I(Δ), a) # make a function to take the derivative of I(Δ);
# ╔═╡ eed08415-9080-4bd9-af9d-6ed3be107c6a
dIdδ = I′(δ) |> Symbolics.simplify_fractions > 0
# ╔═╡ e67aca04-24e0-4395-82c5-321cdc35d55a
dIdΔ = I′(Δ) |> expand |> Symbolics.simplify_fractions > 0
# ╔═╡ 86373d06-c9bc-465b-8e04-dca5ca7b4706
d²IdδdΔ = Symbolics.derivative(I′(δ), Δ)|> simplify > 0 # = d²I/dΔdδ
# ╔═╡ 9c068dd5-385d-44a6-975a-996873bb35bc
md"""
#### Interpretation
The above equations show that **more competition** as well as **stronger preferences for green technologies** each increase the level of investment in such technologies and therefore the level of innovation.
"""
# ╔═╡ 5791f07a-f964-4b4a-a37c-f7fe6aed7560
md"""
> But how do the two influence the levels of *pollution* and *welfare*?
"""
# ╔═╡ f8f14043-37d4-4f6d-a188-1c85c935f5f2
md"""
## Pollution and welfare
"""
# ╔═╡ 6c01741c-8637-416a-bd57-bdcd03c2154c
md"""
Total emissions normalized by total expenditure are given by:
$[1 - I(Δ)] y(Δ) + I(Δ) y^M / γ$
"""
# ╔═╡ aba22dcd-eaca-4b16-9917-f5eaf75839b0
X(Δ) = (1 - I(Δ))*output(Δ) + I(Δ)*yᴹ/γ
# ╔═╡ d4892a0d-016a-4baa-9edd-afde9e26a000
X′(a) = Symbolics.derivative(X(Δ), a); # the derivative of total emission w.r.t variable a (input by user)
# ╔═╡ 87d08e62-2a75-4faf-a418-2670dda64d05
X′(Δ)
# ╔═╡ 3284a4f5-5be5-4c1a-a72a-fa1feb07a699
X′(δ)
# ╔═╡ d7e6229d-6c8e-4a6c-9365-673d506e771f
md"""
The equations here get quite messy, so an immediate interpretation is not very obvious. Let's see if we can play around with some parameters to see how the level of emmissions changes with a change in competition, for example.
"""
# ╔═╡ 9e652832-665b-4d22-9aad-20c07b457c3b
md"""
### Competition and its effects
By increasing competition in *leveled sectors*, those in which firms are neck-and-neck, competition increases pollution.
> As competition increases, ↑ Δ ⟹ ↓ prices, ↑ output ⟹ ↑ pollution since more goods are consumed.
"""
# ╔═╡ 6b7de976-800b-46d0-9875-76e4f8cf2047
md"""
**But**, the fear of lower profits gives firms a high incentive to invest in R&D, which means that the probability of successful innovation $z$ is higher. When these successful innovations occur, emissions are reduced.
"""
# ╔═╡ 9354c637-9f4e-4381-9350-712237372507
md"""
The way that emissions and welfare change depends on the level of $κ$.
"""
# ╔═╡ 7a259d76-bfd3-4c8e-9958-de900a052d83
κ₁ = πᴹ
# ╔═╡ 3061902f-7c89-4300-8d50-a836beece8db
κ₂ = 1 - γ^(-δ) * (1 + 1/γ)/2
# ╔═╡ 27e24a66-b8da-4721-8fd0-ec274875463d
κ₂ > κ₁
# ╔═╡ bad7baad-2f48-495e-8b0e-6726fcec5371
md"""
## An interactive visualization
### How do emissions & pollution change with changes in ``δ, γ, κ, Δ, c``, etc?
- $κ$, the measure of (lack of) ideas/managerial capacity that makes innovation more costly?
- Marginal cost c?
- Level of competition $Δ$?
- Consumer preferences for green technology $δ$?
- The size of the leading-edge environmental innovation $γ$?
"""
# ╔═╡ ce6f05f4-af9f-45c7-811c-f9fc5d3269ad
md"""
> Remember that $γ > 1$ and $δ > 1 \implies c < γ^δ c$
"""
# ╔═╡ 5a1d7422-b6ac-41d0-8051-70fbf8d59236
md"""
#### Visualizing the model
Marginal cost of production c = $(@bind cost Slider(0.1:0.10:10.0, default = 0.50, show_value = true))
Size of leading-edge innovation γ = $(@bind gamma Slider(1.05:0.05:10.0, default = 1.50, show_value = true))
Consumer preferences for greener technology δ = $(@bind delta Slider(0.0:0.05:10.00, default = 1.6, show_value = true))
The cost of innovating κ = $(@bind kappa Slider([κ₂ - κ₁/2, κ₁, κ₂, (κ₂ - κ₁/2)/0.50 , κ₂ + κ₁/2], show_value = false)) =
"""
# ╔═╡ e3e35308-5845-4713-b945-4a0c4fcab000
kappa
# ╔═╡ 4e873006-8c8c-467b-a8a4-4a8a4e1f13d7
md"""
Adjust the limits of the y axis below ↓:
"""
# ╔═╡ 2eca6601-21fa-47ca-a910-30e0a3e7d263
begin
ylim1 = @bind a Slider(-5:0.5:0, default = 0, show_value = true);
ylim2 = @bind b Slider(0:0.5:5, default = 1.5, show_value = true);
ylims = [ylim1, ylim2]
end
# ╔═╡ 0d384486-b3ec-4526-8804-d42687644c6d
Delta = @bind Delta Slider(0.500:0.001:0.999, default = 0.75, show_value = true)
# ╔═╡ e0a1f62a-de89-4247-b15d-c7c88a804988
md"""
By tweaking the model, we can see the main results of the paper:
##### Proposition 2
- for $κ < κ_2− κ_1/2$, aggregate pollution $X(∆)$ decreases monotonically;
- for $κ > κ_2− κ_1/2$, $X(∆)$ increases monotonically
- for $κ ∈ (κ_2 − κ_1/2, κ_2 +κ_1/2)$, $X(∆)$ is hump-shaped; moreover, it is minimized at $∆ = 1$ (versus $∆ = 1/2$) if and only if $κ < κ_2$;
- for all $κ ∈ [κ_1, κ_2]$, $X(∆)$ is minimized at $∆ = 1$.
***
##### Proposition 3
- Aggregate pollution $X(∆)$ decreases with consumer’s social-responsibility concern $δ$.
***
##### Proposition 4
- For $κ ∈ [κ_1, κ_2 −κ_1/2]$, social welfare $W$ increases monotonically with competition $Δ$.
"""
# ╔═╡ e0bd7688-f1ed-44e5-ab1b-42631c2a21b7
md"""
## Social welfare
"""
# ╔═╡ c18a134c-e164-4a48-9ec5-553d17b53eb2
U = (1 - I(Δ))*log(output(Δ)) + I(Δ)*log(γ^δ * yᴹ)
# ╔═╡ 4664d0b6-cff9-4bf3-801f-9ade3e9de2ac
begin
# Calculate emissions and welfare conditional on parameter values
emissions = round((substitute(substitute(X(Delta), Dict(κ => kappa)), Dict((γ => gamma, δ => delta, c => cost))) |> simplify).val, digits = 3);
welfare = round((substitute(substitute(U, Dict((κ => kappa, Δ => Delta))), Dict((γ => gamma, δ => delta, c => cost))) |> simplify).val, digits = 3);
# Rewrite functions to apply to a dataframe
emissions_v_competition(x) = round((substitute(substitute(X(x), Dict(κ => kappa)), Dict((γ => gamma, δ => delta, c => cost))) |> simplify).val, digits = 4);
welfare_v_competition(x) = round((substitute(substitute(U, Dict((κ => kappa, Δ => x))), Dict((γ => gamma, δ => delta, c => cost))) |> simplify).val, digits = 4);
# Write to dataframe
my_data = DataFrame(emissions = [emissions_v_competition(i) for i in 0.50:0.01:1.0],
welfare = [welfare_v_competition(i) for i in 0.50:0.01:1.0],
Δ = 0.50:0.01:1.0);
end;
# ╔═╡ a295ec9e-6a00-4b9e-8254-9ae70cf2cf51
begin
plot(my_data.Δ, my_data.emissions, label = "Emissions", color = "black", theme(:default))
plot!(my_data.Δ, my_data.welfare, label = "Welfare", color = "green")
plot!(legend = :topright)
title!("Pollution & Welfare vs Competition")
xlabel!("Competition (Δ)")
ylims!(a, b)
annotate!([(0.9584, a, ("More competition →", 8, :bottom, :juno))])
annotate!([(0.546, a, ("← Less competition", 8, :bottom, :juno))])
annotate!([(0.57, b - 0.10, ("δ = $delta, γ = $gamma, c = $cost", 8, :top, :juno))])
end
# ╔═╡ 40c38155-60b5-416e-a39c-39c30b974222
md"""
#### Assuming that ``δ =`` $delta, ``γ =`` $gamma, ``c =`` $cost, ``Δ =`` $Delta, and ``κ =`` $kappa, then:
### Emissions = **$(emissions)**
### Welfare = **$(welfare)**
"""
# ╔═╡ ca90d22c-b027-428c-9571-16bcd65ce05a
Symbolics.derivative(U, Δ)
# ╔═╡ 25c5a5d7-6ede-472f-81db-fa9daf1600f1
md"""
## Empirical Analysis
Does the model hold in reality?
In short -- yes! Let's look at a quick overview of the empirical findings from the paper:
"""
# ╔═╡ b2fc04ae-76e9-4435-bb0e-543141dbbb56
html"""
<iframe width="560" height="315" src="https://siasky.net/AAChA3GA7Rk9jo8MqiHmJUohJE1omIkwNVAjX9i5-zrz1A" frameborder="0" allowfullscreen></iframe>
</iframe>
"""
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
ImageIO = "82e4d734-157c-48bb-816b-45c225c6df19"
ImageShow = "4e3cecfd-b093-5904-9786-8bbb286a6a31"
Latexify = "23fbe1c1-3f47-55db-b15f-69d7ec21a316"
PlotThemes = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"
[compat]
DataFrames = "~1.3.2"
Distributions = "~0.25.46"
FileIO = "~1.13.0"
ImageIO = "~0.6.1"
ImageShow = "~0.3.3"
Latexify = "~0.15.9"
PlotThemes = "~2.0.1"
Plots = "~1.25.9"
PlutoUI = "~0.7.34"
Symbolics = "~4.3.0"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.1"
manifest_format = "2.0"
[[deps.AbstractFFTs]]
deps = ["ChainRulesCore", "LinearAlgebra"]
git-tree-sha1 = "6f1d9bc1c08f9f4a8fa92e3ea3cb50153a1b40d4"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "1.1.0"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.1.4"
[[deps.AbstractTrees]]
git-tree-sha1 = "03e0550477d86222521d254b741d470ba17ea0b5"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.3.4"
[[deps.Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "af92965fb30777147966f58acb05da51c5616b5f"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "3.3.3"
[[deps.ArgCheck]]
git-tree-sha1 = "a3a402a35a2f7e0b87828ccabbd5ebfbebe356b4"
uuid = "dce04be8-c92d-5529-be00-80e4d2c0e197"
version = "2.3.0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.ArrayInterface]]
deps = ["Compat", "IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"]
git-tree-sha1 = "1ee88c4c76caa995a885dc2f22a5d548dfbbc0ba"
uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
version = "3.2.2"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.AutoHashEquals]]
git-tree-sha1 = "45bb6705d93be619b81451bb2006b7ee5d4e4453"
uuid = "15f4f7f2-30c1-5605-9d31-71845cf9641f"
version = "0.2.0"
[[deps.BangBang]]
deps = ["Compat", "ConstructionBase", "Future", "InitialValues", "LinearAlgebra", "Requires", "Setfield", "Tables", "ZygoteRules"]
git-tree-sha1 = "d648adb5e01b77358511fb95ea2e4d384109fac9"
uuid = "198e06fe-97b7-11e9-32a5-e1d131e6ad66"
version = "0.3.35"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.Baselet]]
git-tree-sha1 = "aebf55e6d7795e02ca500a689d326ac979aaf89e"
uuid = "9718e550-a3fa-408a-8086-8db961cd8217"
version = "0.1.1"
[[deps.Bijections]]
git-tree-sha1 = "705e7822597b432ebe152baa844b49f8026df090"
uuid = "e2ed5e7c-b2de-5872-ae92-c73ca462fb04"
version = "0.1.3"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "19a35467a82e236ff51bc17a3a44b69ef35185a2"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+0"
[[deps.CEnum]]
git-tree-sha1 = "215a9aa4a1f23fbd05b92769fdd62559488d70e9"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.4.1"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "4b859a208b2397a7a623a03449e4636bdb17bcf2"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.16.1+1"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "f9982ef575e19b0e5c7a98c6e75ee496c0f73a93"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.12.0"
[[deps.ChangesOfVariables]]
deps = ["ChainRulesCore", "LinearAlgebra", "Test"]
git-tree-sha1 = "bf98fa45a0a4cee295de98d4c1462be26345b9a1"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.2"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random"]
git-tree-sha1 = "12fc73e5e0af68ad3137b886e3f7c1eacfca2640"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.17.1"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.0"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"]
git-tree-sha1 = "3f1f500312161f1ae067abe07d13b40f78f32e07"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.9.8"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.8"
[[deps.Combinatorics]]
git-tree-sha1 = "08c8b6831dc00bfea825826be0bc8336fc369860"
uuid = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
version = "1.0.2"
[[deps.CommonSolve]]
git-tree-sha1 = "68a0743f578349ada8bc911a5cbd5a2ef6ed6d1f"
uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2"
version = "0.2.0"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "44c37b4636bc54afac5c574d2d02b625349d6582"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.41.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.CompositeTypes]]
git-tree-sha1 = "d5b014b216dc891e81fea299638e4c10c657b582"
uuid = "b152e2b5-7a66-4b01-a709-34e65c35f657"
version = "0.1.2"
[[deps.CompositionsBase]]
git-tree-sha1 = "455419f7e328a1a2493cabc6428d79e951349769"
uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b"
version = "0.1.1"
[[deps.ConstructionBase]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "f74e9d5388b8620b4cee35d4c5a618dd4dc547f4"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.3.0"
[[deps.Contour]]
deps = ["StaticArrays"]
git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.5.7"
[[deps.Crayons]]
git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.1.1"
[[deps.DataAPI]]
git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.9.0"
[[deps.DataFrames]]
deps = ["Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "ae02104e835f219b8930c7664b8012c93475c340"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "1.3.2"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "3daef5523dd2e769dad2365274f760ff5f282c7d"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.11"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DefineSingletons]]
git-tree-sha1 = "0fba8b706d0178b4dc7fd44a96a92382c9065c2c"
uuid = "244e2a9f-e319-4986-a169-4d1fe445cd52"
version = "0.1.2"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.DensityInterface]]
deps = ["InverseFunctions", "Test"]
git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b"
uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d"
version = "0.4.0"
[[deps.DiffRules]]
deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"]
git-tree-sha1 = "84083a5136b6abf426174a58325ffd159dd6d94f"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "1.9.1"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Distributions]]
deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"]
git-tree-sha1 = "2e97190dfd4382499a4ac349e8d316491c9db341"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
version = "0.25.46"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.8.6"
[[deps.DomainSets]]
deps = ["CompositeTypes", "IntervalSets", "LinearAlgebra", "StaticArrays", "Statistics"]
git-tree-sha1 = "5f5f0b750ac576bcf2ab1d7782959894b304923e"
uuid = "5b8099bc-c8ec-5219-889f-1d9e522a28bf"
version = "0.5.9"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.DynamicPolynomials]]
deps = ["DataStructures", "Future", "LinearAlgebra", "MultivariatePolynomials", "MutableArithmetics", "Pkg", "Reexport", "Test"]
git-tree-sha1 = "74e63cbb0fda19eb0e69fbe622447f1100cd8690"
uuid = "7c1d4256-1411-5781-91ec-d7bc3513ac07"
version = "0.4.3"
[[deps.EarCut_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "3f3a2501fa7236e9b911e0f7a588c657e822bb6d"
uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5"
version = "2.2.3+0"
[[deps.EllipsisNotation]]
deps = ["ArrayInterface"]
git-tree-sha1 = "d7ab55febfd0907b285fbf8dc0c73c0825d9d6aa"
uuid = "da5c29d0-fa7d-589e-88eb-ea29b0a81949"
version = "1.3.0"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "ae13fcbc7ab8f16b0856729b050ef0c446aa3492"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.4.4+0"
[[deps.ExprTools]]
git-tree-sha1 = "56559bbef6ca5ea0c0818fa5c90320398a6fbf8d"
uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
version = "0.1.8"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "d8a578692e3077ac998b50c0217dfd67f21d1e5f"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.0+0"
[[deps.FileIO]]
deps = ["Pkg", "Requires", "UUIDs"]
git-tree-sha1 = "80ced645013a5dbdc52cf70329399c35ce007fae"
uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
version = "1.13.0"
[[deps.FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "deed294cde3de20ae0b2e0355a6c4e1c6a5ceffc"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.12.8"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.93+0"
[[deps.Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "87eb71354d8ec1a96d4a7636bd57a7347dde3ef9"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.10.4+0"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.10+0"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.GLFW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pkg", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"]
git-tree-sha1 = "51d2dfe8e590fbd74e7a842cf6d13d8a2f45dc01"
uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89"
version = "3.3.6+0"
[[deps.GR]]
deps = ["Base64", "DelimitedFiles", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Printf", "Random", "RelocatableFolders", "Serialization", "Sockets", "Test", "UUIDs"]
git-tree-sha1 = "4a740db447aae0fbeb3ee730de1afbb14ac798a1"
uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"
version = "0.63.1"
[[deps.GR_jll]]
deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Pkg", "Qt5Base_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "aa22e1ee9e722f1da183eb33370df4c1aeb6c2cd"
uuid = "d2c73de3-f751-5644-a686-071e5b155ba9"
version = "0.63.1+0"
[[deps.GeometryBasics]]
deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"]
git-tree-sha1 = "58bcdf5ebc057b085e58d95c138725628dd7453c"
uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326"
version = "0.4.1"
[[deps.Gettext_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"]
git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046"
uuid = "78b55507-aeef-58d4-861c-77aaff3498b1"
version = "0.21.0+0"
[[deps.Glib_jll]]
deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "a32d672ac2c967f3deb8a81d828afc739c838a06"
uuid = "7746bdde-850d-59dc-9ae8-88ece973131d"
version = "2.68.3+2"
[[deps.Graphics]]
deps = ["Colors", "LinearAlgebra", "NaNMath"]
git-tree-sha1 = "1c5a84319923bea76fa145d49e93aa4394c73fc2"
uuid = "a2bd30eb-e257-5431-a919-1863eab51364"
version = "1.1.1"
[[deps.Graphite2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011"
uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472"
version = "1.3.14+0"
[[deps.Grisu]]
git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2"
uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe"
version = "1.0.2"
[[deps.HTTP]]
deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"]
git-tree-sha1 = "0fa77022fe4b511826b39c894c90daf5fce3334a"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "0.9.17"
[[deps.HarfBuzz_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"]
git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3"
uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566"
version = "2.8.1+1"
[[deps.Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.4"
[[deps.HypertextLiteral]]
git-tree-sha1 = "2b078b5a615c6c0396c77810d92ee8c6f470d238"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.3"
[[deps.IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.2"