Experiencing issues with potential training #68
Unanswered
ligerzero-ai
asked this question in
Q&A
Replies: 1 comment
-
update: I experience the same (required broadcastable shapes) error on a HPC configuration with a V100 GPU as well - so it doesn't seem to be a memory issue. python3 m3gnet_testdataset.py
2023-04-02 16:58:20.163298: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX512F
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-02 16:58:21.189645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 30955 MB memory: -> device: 0, name: Tesla V100-SXM2-32GB, pci bus id: 0000:b1:00.0, compute capability: 7.0
Epoch 1/100
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("PartitionedCall:1", shape=(14448,), dtype=int32), values=Tensor("Neg:0", shape=(14448, 3), dtype=float32), dense_shape=Tensor("PartitionedCall:2", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/gradients/m3g_net/three_d_interaction/UnsortedSegmentSum_grad/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/gradients/m3g_net/three_d_interaction/UnsortedSegmentSum_grad/GatherV2_grad/Reshape:0", shape=(None, 9), dtype=float32), dense_shape=Tensor("gradients/gradients/m3g_net/three_d_interaction/UnsortedSegmentSum_grad/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/gradients/m3g_net/three_d_interaction_1/UnsortedSegmentSum_grad/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/gradients/m3g_net/three_d_interaction_1/UnsortedSegmentSum_grad/GatherV2_grad/Reshape:0", shape=(None, 9), dtype=float32), dense_shape=Tensor("gradients/gradients/m3g_net/three_d_interaction_1/UnsortedSegmentSum_grad/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/gradients/m3g_net/three_d_interaction_2/UnsortedSegmentSum_grad/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/gradients/m3g_net/three_d_interaction_2/UnsortedSegmentSum_grad/GatherV2_grad/Reshape:0", shape=(None, 9), dtype=float32), dense_shape=Tensor("gradients/gradients/m3g_net/three_d_interaction_2/UnsortedSegmentSum_grad/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
1/Unknown - 22s 22s/step - loss: 0.0011 - MAE(E): 0.0278 - MAE(F): 0.0069 - MAE(S): 0.0000e+00/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("PartitionedCall:1", shape=(14428,), dtype=int32), values=Tensor("Neg:0", shape=(14428, 3), dtype=float32), dense_shape=Tensor("PartitionedCall:2", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
2/Unknown - 39s 18s/step - loss: 9.9813e-04 - MAE(E): 0.0247 - MAE(F): 0.0074 - MAE(S): 0.0000e+00/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/concat_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/concat:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradients/m3g_net/three_d_interaction_2/GatherV2_2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/GatherV2_5_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/GatherV2_5_grad/Reshape:0", shape=(None,), dtype=float32), dense_shape=Tensor("gradients/m3g_net/GatherV2_5_grad/Cast:0", shape=(1,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/GatherV2_6_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/GatherV2_6_grad/Reshape:0", shape=(None,), dtype=float32), dense_shape=Tensor("gradients/m3g_net/GatherV2_6_grad/Cast:0", shape=(1,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/GatherV2_3_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/GatherV2_3_grad/Reshape:0", shape=(None, 3), dtype=float32), dense_shape=Tensor("gradients/m3g_net/GatherV2_3_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/GatherV2_4_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/GatherV2_4_grad/Reshape:0", shape=(None, 3), dtype=float32), dense_shape=Tensor("gradients/m3g_net/GatherV2_4_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/spherical_bessel_with_harmonics/cond_grad/gradients/m3g_net/spherical_bessel_with_harmonics/cond/Repeat/boolean_mask/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int64), values=Tensor("gradients/m3g_net/spherical_bessel_with_harmonics/cond_grad/gradients/m3g_net/spherical_bessel_with_harmonics/cond/Repeat/boolean_mask/GatherV2_grad/Reshape:0", shape=(None,), dtype=float32), dense_shape=Tensor("gradients/m3g_net/spherical_bessel_with_harmonics/cond_grad/gradients/m3g_net/spherical_bessel_with_harmonics/cond/Repeat/boolean_mask/GatherV2_grad/Cast:0", shape=(1,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/three_d_interaction_2/GatherV2_2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/three_d_interaction_2/GatherV2_2_grad/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradients/m3g_net/three_d_interaction_2/GatherV2_2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/three_d_interaction_1/GatherV2_2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/three_d_interaction_1/GatherV2_2_grad/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradients/m3g_net/three_d_interaction_1/GatherV2_2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/three_d_interaction/GatherV2_2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/three_d_interaction/GatherV2_2_grad/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradients/m3g_net/three_d_interaction/GatherV2_2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("PartitionedCall:1", shape=(None,), dtype=int32), values=Tensor("Neg:0", shape=(None, 3), dtype=float32), dense_shape=Tensor("PartitionedCall:2", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
15/Unknown - 63s 3s/step - loss: 4.7272e-04 - MAE(E): 0.0137 - MAE(F): 0.0059 - MAE(S): 0.0000e+00/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/three_d_interaction_2/GatherV2_1_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/three_d_interaction_2/GatherV2_1_grad/Reshape:0", shape=(None, 9), dtype=float32), dense_shape=Tensor("gradients/m3g_net/three_d_interaction_2/GatherV2_1_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer_2/gated_atom_update_2/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer_2/gated_atom_update_2/GatherV2_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer_2/gated_atom_update_2/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer_2/gated_atom_update_2/GatherV2_1_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer_2/gated_atom_update_2/GatherV2_1_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer_2/gated_atom_update_2/GatherV2_1_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer_2/concat_atoms_2/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer_2/concat_atoms_2/GatherV2_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer_2/concat_atoms_2/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/three_d_interaction_1/GatherV2_1_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/three_d_interaction_1/GatherV2_1_grad/Reshape:0", shape=(None, 9), dtype=float32), dense_shape=Tensor("gradients/m3g_net/three_d_interaction_1/GatherV2_1_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer_1/gated_atom_update_1/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer_1/gated_atom_update_1/GatherV2_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer_1/gated_atom_update_1/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer_1/gated_atom_update_1/GatherV2_1_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer_1/gated_atom_update_1/GatherV2_1_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer_1/gated_atom_update_1/GatherV2_1_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer_1/concat_atoms_1/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer_1/concat_atoms_1/GatherV2_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer_1/concat_atoms_1/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/three_d_interaction/GatherV2_1_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/three_d_interaction/GatherV2_1_grad/Reshape:0", shape=(None, 9), dtype=float32), dense_shape=Tensor("gradients/m3g_net/three_d_interaction/GatherV2_1_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer/gated_atom_update/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer/gated_atom_update/GatherV2_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer/gated_atom_update/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer/gated_atom_update/GatherV2_1_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer/gated_atom_update/GatherV2_1_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer/gated_atom_update/GatherV2_1_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/graph_network_layer/concat_atoms/GatherV2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/graph_network_layer/concat_atoms/GatherV2_grad/Reshape:0", shape=(None, 64), dtype=float32), dense_shape=Tensor("gradients/m3g_net/graph_network_layer/concat_atoms/GatherV2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/GatherV2_2_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/GatherV2_2_grad/Reshape:0", shape=(None, 3), dtype=float32), dense_shape=Tensor("gradients/m3g_net/GatherV2_2_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(
/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradients/m3g_net/GatherV2_1_grad/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradients/m3g_net/GatherV2_1_grad/Reshape:0", shape=(None, 3), dtype=float32), dense_shape=Tensor("gradients/m3g_net/GatherV2_1_grad/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
23/Unknown - 89s 3s/step - loss: 4.0682e-04 - MAE(E): 0.0121 - MAE(F): 0.0057 - MAE(S): 0.0000e+002023-04-02 16:59:54.570450: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: required broadcastable shapes
2023-04-02 16:59:54.570735: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: required broadcastable shapes
Traceback (most recent call last):
File "/g/data/v43/Han/Data/FeGBProject_m3gnet/m3gnet_testdataset.py", line 54, in <module>
trainer.train(
File "/g/data/v43/Han/python/lib/python3.10/site-packages/m3gnet/trainers/_potential.py", line 210, in train
lossval, grads, pred_list, emae, fmae, smae = train_one_step(
File "/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/apps/tensorflow/2.8.0/lib/python3.10/site-packages/tensorflow/python/eager/execute.py", line 54, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:
Detected at node 'sub_1' defined at (most recent call last):
File "/g/data/v43/Han/Data/FeGBProject_m3gnet/m3gnet_testdataset.py", line 54, in <module>
trainer.train(
File "/g/data/v43/Han/python/lib/python3.10/site-packages/m3gnet/trainers/_potential.py", line 210, in train
lossval, grads, pred_list, emae, fmae, smae = train_one_step(
File "/g/data/v43/Han/python/lib/python3.10/site-packages/m3gnet/trainers/_potential.py", line 192, in train_one_step
loss_val, emae, fmae, smae = _loss(target_list, pred_list, graph_list[Index.N_ATOMS])
File "/g/data/v43/Han/python/lib/python3.10/site-packages/m3gnet/trainers/_potential.py", line 142, in _loss
f_metric = _mae(target_batch[1], graph_pred_batch[1])
File "/g/data/v43/Han/python/lib/python3.10/site-packages/m3gnet/trainers/_potential.py", line 132, in _mae
return tf.reduce_mean(tf.math.abs(x - y))
Node: 'sub_1'
required broadcastable shapes |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Hi All,
I've been experiencing some issues while trying to train a toy model on my laptop using my own data:
MnGB.zip
Was wondering if anyone could tell at a glance what is happening that's causing this to throw this error?
I've experimented a little bit and it's happening no matter what subset of my data that I take. (small, large, etc.)
It's happening on the first epoch. Sometimes it happens early (step 10ish) sometimes it happens later (step 50ish).
I suspect that it maybe GPU memory related, but I am not sure.
The structures are of grain boundaries with surfaces at the top and bottom of the cell.
The stacktrace on a NVIDIA 3070 Ti Laptop GPU:
Beta Was this translation helpful? Give feedback.
All reactions