Skip to content

Latest commit

 

History

History
698 lines (532 loc) · 30.1 KB

File metadata and controls

698 lines (532 loc) · 30.1 KB

SageMaker

SageMaker TensorFlow Serving Container

SageMaker TensorFlow Serving Container is an a open source project that builds docker images for running TensorFlow Serving on Amazon SageMaker.

Supported versions of TensorFlow: 1.4.1, 1.5.0, 1.6.0, 1.7.0, 1.8.0, 1.9.0, 1.10.0, 1.11.0, 1.12.0, 1.13.1, 1.14.0, 1.15.0, 2.0.0.

Supported versions of TensorFlow for Elastic Inference: 1.11.0, 1.12.0, 1.13.1, 1.14.0.

ECR repositories for SageMaker built TensorFlow Serving Container:

  • 'tensorflow-inference' for any new version starting with 1.13.0 in the following AWS accounts:
    • "871362719292" in "ap-east-1";
    • "217643126080" in "me-south-1";
    • "886529160074" in "us-iso-east-1";
    • "763104351884" in other SageMaker public regions.
  • 'sagemaker-tensorflow-serving' for 1.4.1, 1.5.0, 1.6.0, 1.7.0, 1.8.0, 1.9.0, 1.10.0, 1.11.0, 1.12.0 versions in the following AWS accounts:
    • "057415533634" in "ap-east-1";
    • "724002660598" in "me-south-1";
    • "520713654638" in other SageMaker public regions.

ECR repositories for SageMaker built TensorFlow Serving Container for Elastic Inference:

  • 'tensorflow-inference-eia' for any new version starting with 1.14.0 in the same AWS accounts as TensorFlow Serving Container for newer TensorFlow versions listed above;
  • 'sagemaker-tensorflow-serving-eia' for 1.11.0, 1.12.0, 1.13.1 versions in the same AWS accounts as TensorFlow Serving Container for older TensorFlow versions listed above.

This documentation covers building and testing these docker images.

For information about using TensorFlow Serving on SageMaker, see: Deploying to TensorFlow Serving Endpoints in the SageMaker Python SDK documentation.

For notebook examples, see: Amazon SageMaker Examples.

Table of Contents

  1. Getting Started
  2. Building your image
  3. Running the tests
  4. Pre/Post-Processing
  5. Deploying a TensorFlow Serving Model
  6. Enable Batching
  7. Configurable SageMaker Environment Variables
  8. Deploying to Multi-Model Endpoint

Getting Started

Prerequisites

Make sure you have installed all of the following prerequisites on your development machine:

For testing, you will also need:

To test GPU images locally, you will also need:

Note: Some of the build and tests scripts interact with resources in your AWS account. Be sure to set your default AWS credentials and region using aws configure before using these scripts.

Building your image

Amazon SageMaker uses Docker containers to run all training jobs and inference endpoints.

The Docker images are built from the Dockerfiles in docker/.

The Dockerfiles are grouped based on the version of TensorFlow Serving they support. Each supported processor type (e.g. "cpu", "gpu", "ei") has a different Dockerfile in each group.

To build an image, run the ./scripts/build.sh script:

./scripts/build.sh --version 1.13 --arch cpu
./scripts/build.sh --version 1.13 --arch gpu
./scripts/build.sh --version 1.13 --arch eia

If your are testing locally, building the image is enough. But if you want to your updated image in SageMaker, you need to publish it to an ECR repository in your account. The ./scripts/publish.sh script makes that easy:

./scripts/publish.sh --version 1.13 --arch cpu
./scripts/publish.sh --version 1.13 --arch gpu
./scripts/publish.sh --version 1.13 --arch eia

Note: this will publish to ECR in your default region. Use the --region argument to specify a different region.

Running your image in local docker

You can also run your container locally in Docker to test different models and input inference requests by hand. Standard docker run commands (or nvidia-docker run for GPU images) will work for this, or you can use the provided start.sh and stop.sh scripts:

./scripts/start.sh [--version x.xx] [--arch cpu|gpu|eia|...]
./scripts/stop.sh [--version x.xx] [--arch cpu|gpu|eia|...]

When the container is running, you can send test requests to it using any HTTP client. Here's and an example using the curl command:

curl -X POST --data-binary @test/resources/inputs/test.json \
     -H 'Content-Type: application/json' \
     -H 'X-Amzn-SageMaker-Custom-Attributes: tfs-model-name=half_plus_three' \
     http://localhost:8080/invocations

Additional curl examples can be found in ./scripts/curl.sh.

Running the tests

The package includes automated tests and code checks. The tests use Docker to run the container image locally, and do not access resources in AWS. You can run the tests and static code checkers using tox:

tox

To run local tests against a single container or with other options, you can use the following command:

python -m pytest test/integration/local
    [--docker-name-base <docker_name_base>]
    [--framework-version <framework_version>]
    [--processor-type <processor_type>]

To test against Elastic Inference with Accelerator, you will need an AWS account, publish your built image to ECR repository and run the following command:

tox -e py36 -- test/integration/sagemaker/test_ei.py
    [--repo <ECR_repository_name>]
    [--instance-types <instance_type>,...]
    [--accelerator-type <accelerator_type>]
    [--versions <version>,...]

For example:

tox -e py36 -- test/integration/sagemaker/test_ei.py \
    --repo sagemaker-tensorflow-serving-eia \
    --instance_type ml.m5.xlarge \
    --accelerator-type ml.eia1.medium \
    --versions 1.13.0

Pre/Post-Processing

NOTE: There is currently no support for pre-/post-processing with multi-model containers.

SageMaker TensorFlow Serving Container supports the following Content-Types for requests:

  • application/json (default)
  • text/csv
  • application/jsonlines

And the following content types for responses:

  • application/json (default)
  • application/jsonlines

The container will convert data in these formats to TensorFlow Serving REST API requests, and will send these requests to the default serving signature of your SavedModel bundle.

You can also add customized Python code to process your input and output data. To use this feature, you need to:

  1. Add a python file named inference.py to the code directory inside your model archive.
  2. In inference.py, implement either a pair of input_handler and output_handler functions or a single handler function. Note that if handler function is implemented, input_handler and output_handler will be ignored.

To implement pre/post-processing handler(s), you will need to make use of the Context object created by Python service. The Context is a namedtuple with following attributes:

  • model_name (string): the name of the model you will to use for inference, for example 'half_plus_three'
  • model_version (string): version of the model, for example '5'
  • method (string): inference method, for example, 'predict', 'classify' or 'regress', for more information on methods, please see Classify and Regress API and Predict API
  • rest_uri (string): the TFS REST uri generated by the Python service, for example, 'http://localhost:8501/v1/models/half_plus_three:predict'
  • grpc_port (string): the GRPC port number generated by the Python service, for example, '9000'
  • custom_attributes (string): content of 'X-Amzn-SageMaker-Custom-Attributes' header from the original request, for example, 'tfs-model-name=half_plus_three,tfs-method=predict'
  • request_content_type (string): the original request content type, defaulted to 'application/json' if not provided
  • accept_header (string): the original request accept type, defaulted to 'application/json' if not provided
  • content_length (int): content length of the original request

Here's a code example implementing input_handler and output_handler. By providing these, the Python service will post the request to TFS REST uri with the data pre-processed by input_handler and pass the response to output_handler for post-processing.

import json

def input_handler(data, context):
    """ Pre-process request input before it is sent to TensorFlow Serving REST API
    Args:
        data (obj): the request data, in format of dict or string
        context (Context): an object containing request and configuration details
    Returns:
        (dict): a JSON-serializable dict that contains request body and headers
    """
    if context.request_content_type == 'application/json':
        # pass through json (assumes it's correctly formed)
        d = data.read().decode('utf-8')
        return d if len(d) else ''

    if context.request_content_type == 'text/csv':
        # very simple csv handler
        return json.dumps({
            'instances': [float(x) for x in data.read().decode('utf-8').split(',')]
        })

    raise ValueError('{{"error": "unsupported content type {}"}}'.format(
        context.request_content_type or "unknown"))


def output_handler(data, context):
    """Post-process TensorFlow Serving output before it is returned to the client.
    Args:
        data (obj): the TensorFlow serving response
        context (Context): an object containing request and configuration details
    Returns:
        (bytes, string): data to return to client, response content type
    """
    if data.status_code != 200:
        raise ValueError(data.content.decode('utf-8'))

    response_content_type = context.accept_header
    prediction = data.content
    return prediction, response_content_type

Here's another code example implementing input_handler and output_handler to format image data into a TFS request that expects image data as an encoded string rather than as a numeric tensor:

import base64
import io
import json
import requests

def input_handler(data, context):
    """ Pre-process request input before it is sent to TensorFlow Serving REST API

    Args:
        data (obj): the request data stream
        context (Context): an object containing request and configuration details

    Returns:
        (dict): a JSON-serializable dict that contains request body and headers
    """

    if context.request_content_type == 'application/x-image':
        payload = data.read()
        encoded_image = base64.b64encode(payload).decode('utf-8')
        instance = [{"b64": encoded_image}]
        return json.dumps({"instances": instance})
    else:
        _return_error(415, 'Unsupported content type "{}"'.format(
            context.request_content_type or 'Unknown'))


def output_handler(response, context):
    """Post-process TensorFlow Serving output before it is returned to the client.

    Args:
        response (obj): the TensorFlow serving response
        context (Context): an object containing request and configuration details

    Returns:
        (bytes, string): data to return to client, response content type
    """
    if response.status_code != 200:
        _return_error(response.status_code, response.content.decode('utf-8'))
    response_content_type = context.accept_header
    prediction = response.content
    return prediction, response_content_type


def _return_error(code, message):
    raise ValueError('Error: {}, {}'.format(str(code), message))

The input_handler above creates requests that match the input of the following TensorFlow Serving SignatureDef, displayed using the TensorFlow saved_model_cli:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['image_bytes'] tensor_info:
        dtype: DT_STRING
        shape: (-1)
        name: input_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['classes'] tensor_info:
        dtype: DT_INT64
        shape: (-1)
        name: ArgMax:0
    outputs['probabilities'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 1001)
        name: softmax_tensor:0
  Method name is: tensorflow/serving/predict

There are occasions when you might want to have complete control over the request handler. For example, making TFS request (REST or GRPC) to one model, and then making a request to a second model. In this case, you may implement the handler instead of the input_handler and output_handler pair:

import json
import requests


def handler(data, context):
    """Handle request.
    Args:
        data (obj): the request data
        context (Context): an object containing request and configuration details
    Returns:
        (bytes, string): data to return to client, (optional) response content type
    """
    processed_input = _process_input(data, context)
    response = requests.post(context.rest_uri, data=processed_input)
    return _process_output(response, context)


def _process_input(data, context):
    if context.request_content_type == 'application/json':
        # pass through json (assumes it's correctly formed)
        d = data.read().decode('utf-8')
        return d if len(d) else ''

    if context.request_content_type == 'text/csv':
        # very simple csv handler
        return json.dumps({
            'instances': [float(x) for x in data.read().decode('utf-8').split(',')]
        })

    raise ValueError('{{"error": "unsupported content type {}"}}'.format(
        context.request_content_type or "unknown"))


def _process_output(data, context):
    if data.status_code != 200:
        raise ValueError(data.content.decode('utf-8'))

    response_content_type = context.accept_header
    prediction = data.content
    return prediction, response_content_type

You can also bring in external dependencies to help with your data processing. There are 2 ways to do this:

  1. If your model archive contains code/requirements.txt, the container will install the Python dependencies at runtime using pip install -r.
  2. If you are working in a network-isolation situation or if you don't want to install dependencies at runtime everytime your Endpoint starts or Batch Transform job runs, you may want to put pre-downloaded dependencies under code/lib directory in your model archive, the container will then add the modules to the Python path. Note that if both code/lib and code/requirements.txt are present in the model archive, the requirements.txt will be ignored.

Your untarred model directory structure may look like this if you are using requirements.txt:

    model1
        |--[model_version_number]
            |--variables
            |--saved_model.pb
    model2
        |--[model_version_number]
            |--assets
            |--variables
            |--saved_model.pb
    code
        |--inference.py
        |--requirements.txt

Your untarred model directory structure may look like this if you have downloaded modules under code/lib:

    model1
        |--[model_version_number]
            |--variables
            |--saved_model.pb
    model2
        |--[model_version_number]
            |--assets
            |--variables
            |--saved_model.pb
    code
        |--lib
            |--external_module
        |--inference.py

Deploying a TensorFlow Serving Model

To use your TensorFlow Serving model on SageMaker, you first need to create a SageMaker Model. After creating a SageMaker Model, you can use it to create SageMaker Batch Transform Jobs for offline inference, or create SageMaker Endpoints for real-time inference.

Creating a SageMaker Model

A SageMaker Model contains references to a model.tar.gz file in S3 containing serialized model data, and a Docker image used to serve predictions with that model.

You must package the contents in a model directory (including models, inference.py and external modules) in .tar.gz format in a file named "model.tar.gz" and upload it to S3. If you're on a Unix-based operating system, you can create a "model.tar.gz" using the tar utility:

tar -czvf model.tar.gz 12345 code

where "12345" is your TensorFlow serving model version which contains your SavedModel.

After uploading your model.tar.gz to an S3 URI, such as s3://your-bucket/your-models/model.tar.gz, create a SageMaker Model which will be used to generate inferences. Set PrimaryContainer.ModelDataUrl to the S3 URI where you uploaded the model.tar.gz, and set PrimaryContainer.Image to an image following this format:

520713654638.dkr.ecr.{REGION}.amazonaws.com/sagemaker-tensorflow-serving:{SAGEMAKER_TENSORFLOW_SERVING_VERSION}-{cpu|gpu}
763104351884.dkr.ecr.{REGION}.amazonaws.com/tensorflow-inference:{TENSORFLOW_INFERENCE_VERSION}-{cpu|gpu}

For those using Elastic Inference set the image following this format instead:

520713654638.dkr.ecr.{REGION}.amazonaws.com/sagemaker-tensorflow-serving-eia:{SAGEMAKER_TENSORFLOW_SERVING_EIA_VERSION}-cpu
763104351884.dkr.ecr.{REGION}.amazonaws.com/tensorflow-inference-eia:{TENSORFLOW_INFERENCE_EIA_VERSION}-cpu

Where REGION is your AWS region, such as "us-east-1" or "eu-west-1"; SAGEMAKER_TENSORFLOW_SERVING_VERSION, SAGEMAKER_TENSORFLOW_SERVING_EIA_VERSION, TENSORFLOW_INFERENCE_VERSION, TENSORFLOW_INFERENCE_EIA_VERSION are one of the supported versions mentioned above; and "gpu" for use on GPU-based instance types like ml.p3.2xlarge, or "cpu" for use on CPU-based instances like ml.c5.xlarge.

The code examples below show how to create a SageMaker Model from a model.tar.gz containing a TensorFlow Serving model using the AWS CLI (though you can use any language supported by the AWS SDK) and the SageMaker Python SDK.

AWS CLI

timestamp() {
  date +%Y-%m-%d-%H-%M-%S
}


MODEL_NAME="image-classification-tfs-$(timestamp)"
MODEL_DATA_URL="s3://my-sagemaker-bucket/model/model.tar.gz"

aws s3 cp model.tar.gz $MODEL_DATA_URL

REGION="us-west-2"
TFS_VERSION="1.12.0"
PROCESSOR_TYPE="gpu"
IMAGE="520713654638.dkr.ecr.$REGION.amazonaws.com/sagemaker-tensorflow-serving:$TFS_VERSION-$PROCESSOR_TYPE"

# See the following document for more on SageMaker Roles:
# https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
ROLE_ARN="[SageMaker-compatible IAM Role ARN]"

aws sagemaker create-model \
    --model-name $MODEL_NAME \
    --primary-container Image=$IMAGE,ModelDataUrl=$MODEL_DATA_URL \
    --execution-role-arn $ROLE_ARN

SageMaker Python SDK

import os
import sagemaker
from sagemaker.tensorflow.serving import Model

sagemaker_session = sagemaker.Session()
role = 'arn:aws:iam::038453126632:role/service-role/AmazonSageMaker-ExecutionRole-20180718T141171'
bucket = 'am-datasets'
prefix = 'sagemaker/high-throughput-tfs-batch-transform'
s3_path = 's3://{}/{}'.format(bucket, prefix)

model_data = sagemaker_session.upload_data('model.tar.gz',
                                           bucket,
                                           os.path.join(prefix, 'model'))

# The "Model" object doesn't create a SageMaker Model until a Transform Job or Endpoint is created.
tensorflow_serving_model = Model(model_data=model_data,
                                 role=role,
                                 framework_version='1.13',
                                 sagemaker_session=sagemaker_session)

After creating a SageMaker Model, you can refer to the model name to create Transform Jobs and Endpoints. Code examples are given below.

Creating a Batch Transform Job

A Batch Transform job runs an offline-inference job using your TensorFlow Serving model. Input data in S3 is converted to HTTP requests, and responses are saved to an output bucket in S3.

CLI

TRANSFORM_JOB_NAME="tfs-transform-job"
TRANSFORM_S3_INPUT="s3://my-sagemaker-input-bucket/sagemaker-transform-input-data/"
TRANSFORM_S3_OUTPUT="s3://my-sagemaker-output-bucket/sagemaker-transform-output-data/"

TRANSFORM_INPUT_DATA_SOURCE={S3DataSource={S3DataType="S3Prefix",S3Uri=$TRANSFORM_S3_INPUT}}
CONTENT_TYPE="application/x-image"

INSTANCE_TYPE="ml.p2.xlarge"
INSTANCE_COUNT=2

MAX_PAYLOAD_IN_MB=1
MAX_CONCURRENT_TRANSFORMS=16

aws sagemaker create-transform-job \
    --model-name $MODEL_NAME \
    --transform-input DataSource=$TRANSFORM_INPUT_DATA_SOURCE,ContentType=$CONTENT_TYPE \
    --transform-output S3OutputPath=$TRANSFORM_S3_OUTPUT \
    --transform-resources InstanceType=$INSTANCE_TYPE,InstanceCount=$INSTANCE_COUNT \
    --max-payload-in-mb $MAX_PAYLOAD_IN_MB \
    --max-concurrent-transforms $MAX_CONCURRENT_TRANSFORMS \
    --transform-job-name $JOB_NAME

SageMaker Python SDK

output_path = 's3://my-sagemaker-output-bucket/sagemaker-transform-output-data/'
tensorflow_serving_transformer = tensorflow_serving_model.transformer(
                                     framework_version = '1.12',
                                     instance_count=2,
                                     instance_type='ml.p2.xlarge',
                                     max_concurrent_transforms=16,
                                     max_payload=1,
                                     output_path=output_path)

input_path = 's3://my-sagemaker-input-bucket/sagemaker-transform-input-data/'
tensorflow_serving_transformer.transform(input_path, content_type='application/x-image')

Creating an Endpoint

A SageMaker Endpoint hosts your TensorFlow Serving model for real-time inference. The InvokeEndpoint API is used to send data for predictions to your TensorFlow Serving model.

AWS CLI

ENDPOINT_CONFIG_NAME="my-endpoint-config"
VARIANT_NAME="TFS"
INITIAL_INSTANCE_COUNT=1
INSTANCE_TYPE="ml.p2.xlarge"
aws sagemaker create-endpoint-config \
    --endpoint-config-name $ENDPOINT_CONFIG_NAME \
    --production-variants VariantName=$VARIANT_NAME,ModelName=$MODEL_NAME,InitialInstanceCount=$INITIAL_INSTANCE_COUNT,InstanceType=$INSTANCE_TYPE

ENDPOINT_NAME="my-tfs-endpoint"
aws sagemaker create-endpoint \
    --endpoint-name $ENDPOINT_NAME \
    --endpoint-config-name $ENDPOINT_CONFIG_NAME

BODY="fileb://myfile.jpeg"
CONTENT_TYPE='application/x-image'
OUTFILE="response.json"
aws sagemaker-runtime invoke-endpoint \
    --endpoint-name $ENDPOINT_NAME \
    --content-type=$CONTENT_TYPE \
    --body $BODY \
    $OUTFILE

SageMaker Python SDK

predictor = tensorflow_serving_model.deploy(initial_instance_count=1,
                                            framework_version='1.12',
                                            instance_type='ml.p2.xlarge')
prediction = predictor.predict(data)

Enabling Batching

You can configure SageMaker TensorFlow Serving Container to batch multiple records together before performing an inference. This uses TensorFlow Serving's underlying batching feature.

You may be able to significantly improve throughput, especially on GPU instances, by enabling and configuring batching. To get the best performance, it may be necessary to tune batching parameters, especially the batch size and batch timeout, to your model, input data, and instance type.

You can set the following environment variables on a SageMaker Model or Transform Job to enable and configure batching:

# Configures whether to enable record batching.
# Defaults to false.
SAGEMAKER_TFS_ENABLE_BATCHING="true"

# Configures how many records
# Corresponds to "max_batch_size" in TensorFlow Serving.
# Defaults to 8.
SAGEMAKER_TFS_MAX_BATCH_SIZE="32"

# Configures how long to wait for a full batch, in microseconds.
# Corresponds to "batch_timeout_micros" in TensorFlow Serving.
# Defaults to 1000 (1ms).
SAGEMAKER_TFS_BATCH_TIMEOUT_MICROS="100000"

# Configures how many batches to process concurrently.
# Corresponds to "num_batch_threads" in TensorFlow Serving
# Defaults to number of CPUs.
SAGEMAKER_TFS_NUM_BATCH_THREADS="16"

# Configures number of batches that can be enqueued.
# Corresponds to "max_enqueued_batches" in TensorFlow Serving.
# Defaults to number of CPUs for real-time inference,
# or arbitrarily large for batch transform (because batch transform).
SAGEMAKER_TFS_MAX_ENQUEUED_BATCHES="10000"

Configurable SageMaker Environment Variables

The following environment variables can be set on a SageMaker Model or Transform Job if further configuration is required:

Configures the logging level for Gunicorn.

# Defaults to "info"
SAGEMAKER_GUNICORN_LOGLEVEL="debug"

Configures how long a Gunicorn worker may be silent before it is killed and restarted.

# Defaults to 30.
SAGEMAKER_GUNICORN_TIMEOUT_SECONDS="60"

Configures the timeout for reading a response from the proxied server. Note: If SAGEMAKER_GUNICORN_TIMEOUT_SECONDS is greater, SAGEMAKER_NGINX_PROXY_READ_TIMEOUT_SECONDS will be set to the value of SAGEMAKER_GUNICORN_TIMEOUT_SECONDS.

# Defaults to 60.
SAGEMAKER_NGINX_PROXY_READ_TIMEOUT_SECONDS="120"

Deploying to Multi-Model Endpoint

SageMaker TensorFlow Serving container (version 1.5.0 and 2.1.0, CPU) now supports Multi-Model Endpoint. With this feature, you can deploy different models (not just different versions of a model) to a single endpoint. To deploy a Multi-Model endpoint with TFS container, please start the container with environment variable SAGEMAKER_MULTI_MODEL=True.

Multi-Model Interfaces

We provide four different interfaces for user to interact with a Multi-Model Mode container:

+---------------------+---------------------------------+---------------------------------------------+
| Functionality       | Request                         | Response/Actions                            |
+---------------------+---------------------------------+---------------------------------------------+
| List A Single Model | GET /models/{model_name}        | Information about the specified model       |
+---------------------+---------------------------------+---------------------------------------------+
| List All Models     | GET /models                     | List of Information about all loaded models |
+---------------------+---------------------------------+---------------------------------------------+
|                     | POST /models                    | Load model with "model_name" from           |
|                     | data = {                        | specified url                               |
| Load A Model        |     "model_name": <model-name>, |                                             |
|                     |     "url": <path to model data> |                                             |
|                     | }                               |                                             |
+---------------------+---------------------------------+---------------------------------------------+
| Make Invocations    | POST /models/{model_name}/invoke| Return inference result from                |
|                     | data = <invocation payload>     | the specified model                         |
+---------------------+---------------------------------+---------------------------------------------+
| Unload A Model      | DELETE /models/{model_name}     | Unload the specified model                  |
+---------------------+---------------------------------+---------------------------------------------+

Maximum Number of Models

Also please note the environment variable SAGEMAKER_SAFE_PORT_RANGE will limit the number of models that can be loaded to the endpoint at the same time. Only 90% of the ports will be utilized and each loaded model will be allocated with 2 ports (one for REST API and the other for GRPC). For example, if the SAGEMAKER_SAFE_PORT_RANGE is between 9000 to 9999, the maximum number of models that can be loaded to the endpoint at the same time would be 499 ((9999 - 9000) * 0.9 / 2).

Using Multi-Model Endpoint with Pre/Post-Processing

Multi-Model Endpoint can be used together with Pre/Post-Processing. Each model will need its own inference.py otherwise default handlers will be used. An example of the directory structure of Multi-Model Endpoint and Pre/Post-Processing would look like this:

    /opt/ml/models/model1/model
        |--[model_version_number]
            |--variables
            |--saved_model.pb
    /opt/ml/models/model2/model
        |--[model_version_number]
            |--assets
            |--variables
            |--saved_model.pb
        code
            |--lib
                |--external_module
            |--inference.py

Contributing

Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.

License

This library is licensed under the Apache 2.0 License.