-
Notifications
You must be signed in to change notification settings - Fork 900
/
DenseLU.cs
183 lines (162 loc) · 7.27 KB
/
DenseLU.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// <copyright file="DenseLU.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics.Providers.LinearAlgebra;
namespace MathNet.Numerics.LinearAlgebra.Single.Factorization
{
/// <summary>
/// <para>A class which encapsulates the functionality of an LU factorization.</para>
/// <para>For a matrix A, the LU factorization is a pair of lower triangular matrix L and
/// upper triangular matrix U so that A = L*U.</para>
/// </summary>
/// <remarks>
/// The computation of the LU factorization is done at construction time.
/// </remarks>
internal sealed class DenseLU : LU
{
/// <summary>
/// Initializes a new instance of the <see cref="DenseLU"/> class. This object will compute the
/// LU factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not a square matrix.</exception>
public static DenseLU Create(DenseMatrix matrix)
{
if (matrix == null)
{
throw new ArgumentNullException(nameof(matrix));
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException("Matrix must be square.");
}
// Create an array for the pivot indices.
var pivots = new int[matrix.RowCount];
// Create a new matrix for the LU factors, then perform factorization (while overwriting).
var factors = (DenseMatrix) matrix.Clone();
LinearAlgebraControl.Provider.LUFactor(factors.Values, factors.RowCount, pivots);
return new DenseLU(factors, pivots);
}
DenseLU(Matrix<float> factors, int[] pivots)
: base(factors, pivots)
{
}
/// <summary>
/// Solves a system of linear equations, <c>AX = B</c>, with A LU factorized.
/// </summary>
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <c>B</c>.</param>
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <c>X</c>.</param>
public override void Solve(Matrix<float> input, Matrix<float> result)
{
// Check for proper arguments.
if (input == null)
{
throw new ArgumentNullException(nameof(input));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
// Check for proper dimensions.
if (result.RowCount != input.RowCount)
{
throw new ArgumentException("Matrix row dimensions must agree.");
}
if (result.ColumnCount != input.ColumnCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
if (input.RowCount != Factors.RowCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factors);
}
if (input is DenseMatrix dinput && result is DenseMatrix dresult)
{
// Copy the contents of input to result.
Buffer.BlockCopy(dinput.Values, 0, dresult.Values, 0, dinput.Values.Length * Constants.SizeOfFloat);
// LU solve by overwriting result.
var dfactors = (DenseMatrix) Factors;
LinearAlgebraControl.Provider.LUSolveFactored(input.ColumnCount, dfactors.Values, dfactors.RowCount, Pivots, dresult.Values);
}
else
{
throw new NotSupportedException("Can only do LU factorization for dense matrices at the moment.");
}
}
/// <summary>
/// Solves a system of linear equations, <c>Ax = b</c>, with A LU factorized.
/// </summary>
/// <param name="input">The right hand side vector, <c>b</c>.</param>
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <c>x</c>.</param>
public override void Solve(Vector<float> input, Vector<float> result)
{
// Check for proper arguments.
if (input == null)
{
throw new ArgumentNullException(nameof(input));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
// Check for proper dimensions.
if (input.Count != result.Count)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (input.Count != Factors.RowCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factors);
}
if (input is DenseVector dinput && result is DenseVector dresult)
{
// Copy the contents of input to result.
Buffer.BlockCopy(dinput.Values, 0, dresult.Values, 0, dinput.Values.Length * Constants.SizeOfFloat);
// LU solve by overwriting result.
var dfactors = (DenseMatrix) Factors;
LinearAlgebraControl.Provider.LUSolveFactored(1, dfactors.Values, dfactors.RowCount, Pivots, dresult.Values);
}
else
{
throw new NotSupportedException("Can only do LU factorization for dense vectors at the moment.");
}
}
/// <summary>
/// Returns the inverse of this matrix. The inverse is calculated using LU decomposition.
/// </summary>
/// <returns>The inverse of this matrix.</returns>
public override Matrix<float> Inverse()
{
var result = (DenseMatrix) Factors.Clone();
LinearAlgebraControl.Provider.LUInverseFactored(result.Values, result.RowCount, Pivots);
return result;
}
}
}