This repository has been archived by the owner on Apr 26, 2024. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
descriptors.py
713 lines (570 loc) · 24.7 KB
/
descriptors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# Copyright 2015, 2016 OpenMarket Ltd
# Copyright 2018 New Vector Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import functools
import inspect
import logging
from typing import (
Any,
Awaitable,
Callable,
Collection,
Dict,
Generic,
Hashable,
Iterable,
List,
Mapping,
Optional,
Sequence,
Tuple,
Type,
TypeVar,
Union,
cast,
)
from weakref import WeakValueDictionary
from twisted.internet import defer
from twisted.python.failure import Failure
from synapse.logging.context import make_deferred_yieldable, preserve_fn
from synapse.util import unwrapFirstError
from synapse.util.async_helpers import delay_cancellation
from synapse.util.caches.deferred_cache import DeferredCache
from synapse.util.caches.lrucache import LruCache
logger = logging.getLogger(__name__)
CacheKey = Union[Tuple, Any]
F = TypeVar("F", bound=Callable[..., Any])
class CachedFunction(Generic[F]):
invalidate: Any = None
invalidate_all: Any = None
prefill: Any = None
cache: Any = None
num_args: Any = None
__name__: str
# Note: This function signature is actually fiddled with by the synapse mypy
# plugin to a) make it a bound method, and b) remove any `cache_context` arg.
__call__: F
class _CacheDescriptorBase:
def __init__(
self,
orig: Callable[..., Any],
num_args: Optional[int],
uncached_args: Optional[Collection[str]] = None,
cache_context: bool = False,
name: Optional[str] = None,
):
self.orig = orig
self.name = name or orig.__name__
arg_spec = inspect.getfullargspec(orig)
all_args = arg_spec.args
# There's no reason that keyword-only arguments couldn't be supported,
# but right now they're buggy so do not allow them.
if arg_spec.kwonlyargs:
raise ValueError(
"_CacheDescriptorBase does not support keyword-only arguments."
)
if "cache_context" in all_args:
if not cache_context:
raise ValueError(
"Cannot have a 'cache_context' arg without setting"
" cache_context=True"
)
elif cache_context:
raise ValueError(
"Cannot have cache_context=True without having an arg"
" named `cache_context`"
)
if num_args is not None and uncached_args is not None:
raise ValueError("Cannot provide both num_args and uncached_args")
if num_args is None:
num_args = len(all_args) - 1
if cache_context:
num_args -= 1
if len(all_args) < num_args + 1:
raise Exception(
"Not enough explicit positional arguments to key off for %r: "
"got %i args, but wanted %i. (@cached cannot key off *args or "
"**kwargs)" % (orig.__name__, len(all_args), num_args)
)
self.num_args = num_args
# list of the names of the args used as the cache key
self.arg_names = all_args[1 : num_args + 1]
# If there are args to not cache on, filter them out (and fix the size of num_args).
if uncached_args is not None:
include_arg_in_cache_key = [n not in uncached_args for n in self.arg_names]
else:
include_arg_in_cache_key = [True] * len(self.arg_names)
# self.arg_defaults is a map of arg name to its default value for each
# argument that has a default value
if arg_spec.defaults:
self.arg_defaults = dict(
zip(all_args[-len(arg_spec.defaults) :], arg_spec.defaults)
)
else:
self.arg_defaults = {}
if "cache_context" in self.arg_names:
raise Exception("cache_context arg cannot be included among the cache keys")
self.add_cache_context = cache_context
self.cache_key_builder = _get_cache_key_builder(
self.arg_names, include_arg_in_cache_key, self.arg_defaults
)
class _LruCachedFunction(Generic[F]):
cache: LruCache[CacheKey, Any]
__call__: F
def lru_cache(
*, max_entries: int = 1000, cache_context: bool = False
) -> Callable[[F], _LruCachedFunction[F]]:
"""A method decorator that applies a memoizing cache around the function.
This is more-or-less a drop-in equivalent to functools.lru_cache, although note
that the signature is slightly different.
The main differences with functools.lru_cache are:
(a) the size of the cache can be controlled via the cache_factor mechanism
(b) the wrapped function can request a "cache_context" which provides a
callback mechanism to indicate that the result is no longer valid
(c) prometheus metrics are exposed automatically.
The function should take zero or more arguments, which are used as the key for the
cache. Single-argument functions use that argument as the cache key; otherwise the
arguments are built into a tuple.
Cached functions can be "chained" (i.e. a cached function can call other cached
functions and get appropriately invalidated when they called caches are
invalidated) by adding a special "cache_context" argument to the function
and passing that as a kwarg to all caches called. For example:
@lru_cache(cache_context=True)
def foo(self, key, cache_context):
r1 = self.bar1(key, on_invalidate=cache_context.invalidate)
r2 = self.bar2(key, on_invalidate=cache_context.invalidate)
return r1 + r2
The wrapped function also has a 'cache' property which offers direct access to the
underlying LruCache.
"""
def func(orig: F) -> _LruCachedFunction[F]:
desc = LruCacheDescriptor(
orig,
max_entries=max_entries,
cache_context=cache_context,
)
return cast(_LruCachedFunction[F], desc)
return func
class LruCacheDescriptor(_CacheDescriptorBase):
"""Helper for @lru_cache"""
class _Sentinel(enum.Enum):
sentinel = object()
def __init__(
self,
orig: Callable[..., Any],
max_entries: int = 1000,
cache_context: bool = False,
):
super().__init__(
orig, num_args=None, uncached_args=None, cache_context=cache_context
)
self.max_entries = max_entries
def __get__(self, obj: Optional[Any], owner: Optional[Type]) -> Callable[..., Any]:
cache: LruCache[CacheKey, Any] = LruCache(
cache_name=self.name,
max_size=self.max_entries,
)
get_cache_key = self.cache_key_builder
sentinel = LruCacheDescriptor._Sentinel.sentinel
@functools.wraps(self.orig)
def _wrapped(*args: Any, **kwargs: Any) -> Any:
invalidate_callback = kwargs.pop("on_invalidate", None)
callbacks = (invalidate_callback,) if invalidate_callback else ()
cache_key = get_cache_key(args, kwargs)
ret = cache.get(cache_key, default=sentinel, callbacks=callbacks)
if ret != sentinel:
return ret
# Add our own `cache_context` to argument list if the wrapped function
# has asked for one
if self.add_cache_context:
kwargs["cache_context"] = _CacheContext.get_instance(cache, cache_key)
ret2 = self.orig(obj, *args, **kwargs)
cache.set(cache_key, ret2, callbacks=callbacks)
return ret2
wrapped = cast(CachedFunction, _wrapped)
wrapped.cache = cache
obj.__dict__[self.name] = wrapped
return wrapped
class DeferredCacheDescriptor(_CacheDescriptorBase):
"""A method decorator that applies a memoizing cache around the function.
This caches deferreds, rather than the results themselves. Deferreds that
fail are removed from the cache.
The function is presumed to take zero or more arguments, which are used in
a tuple as the key for the cache. Hits are served directly from the cache;
misses use the function body to generate the value.
The wrapped function has an additional member, a callable called
"invalidate". This can be used to remove individual entries from the cache.
The wrapped function has another additional callable, called "prefill",
which can be used to insert values into the cache specifically, without
calling the calculation function.
Cached functions can be "chained" (i.e. a cached function can call other cached
functions and get appropriately invalidated when they called caches are
invalidated) by adding a special "cache_context" argument to the function
and passing that as a kwarg to all caches called. For example::
@cached(cache_context=True)
def foo(self, key, cache_context):
r1 = yield self.bar1(key, on_invalidate=cache_context.invalidate)
r2 = yield self.bar2(key, on_invalidate=cache_context.invalidate)
return r1 + r2
Args:
orig:
max_entries:
num_args: number of positional arguments (excluding ``self`` and
``cache_context``) to use as cache keys. Defaults to all named
args of the function.
uncached_args: a list of argument names to not use as the cache key.
(``self`` and ``cache_context`` are always ignored.) Cannot be used
with num_args.
tree:
cache_context:
iterable:
prune_unread_entries: If True, cache entries that haven't been read recently
will be evicted from the cache in the background. Set to False to opt-out
of this behaviour.
"""
def __init__(
self,
orig: Callable[..., Any],
max_entries: int = 1000,
num_args: Optional[int] = None,
uncached_args: Optional[Collection[str]] = None,
tree: bool = False,
cache_context: bool = False,
iterable: bool = False,
prune_unread_entries: bool = True,
name: Optional[str] = None,
):
super().__init__(
orig,
num_args=num_args,
uncached_args=uncached_args,
cache_context=cache_context,
name=name,
)
if tree and self.num_args < 2:
raise RuntimeError(
"tree=True is nonsensical for cached functions with a single parameter"
)
self.max_entries = max_entries
self.tree = tree
self.iterable = iterable
self.prune_unread_entries = prune_unread_entries
def __get__(self, obj: Optional[Any], owner: Optional[Type]) -> Callable[..., Any]:
cache: DeferredCache[CacheKey, Any] = DeferredCache(
name=self.name,
max_entries=self.max_entries,
tree=self.tree,
iterable=self.iterable,
prune_unread_entries=self.prune_unread_entries,
)
get_cache_key = self.cache_key_builder
@functools.wraps(self.orig)
def _wrapped(*args: Any, **kwargs: Any) -> Any:
# If we're passed a cache_context then we'll want to call its invalidate()
# whenever we are invalidated
invalidate_callback = kwargs.pop("on_invalidate", None)
cache_key = get_cache_key(args, kwargs)
try:
ret = cache.get(cache_key, callback=invalidate_callback)
except KeyError:
# Add our own `cache_context` to argument list if the wrapped function
# has asked for one
if self.add_cache_context:
kwargs["cache_context"] = _CacheContext.get_instance(
cache, cache_key
)
ret = defer.maybeDeferred(preserve_fn(self.orig), obj, *args, **kwargs)
ret = cache.set(cache_key, ret, callback=invalidate_callback)
# We started a new call to `self.orig`, so we must always wait for it to
# complete. Otherwise we might mark our current logging context as
# finished while `self.orig` is still using it in the background.
ret = delay_cancellation(ret)
return make_deferred_yieldable(ret)
wrapped = cast(CachedFunction, _wrapped)
if self.num_args == 1:
assert not self.tree
wrapped.invalidate = lambda key: cache.invalidate(key[0])
wrapped.prefill = lambda key, val: cache.prefill(key[0], val)
else:
wrapped.invalidate = cache.invalidate
wrapped.prefill = cache.prefill
wrapped.invalidate_all = cache.invalidate_all
wrapped.cache = cache
wrapped.num_args = self.num_args
obj.__dict__[self.name] = wrapped
return wrapped
class DeferredCacheListDescriptor(_CacheDescriptorBase):
"""Wraps an existing cache to support bulk fetching of keys.
Given an iterable of keys it looks in the cache to find any hits, then passes
the set of missing keys to the wrapped function.
Once wrapped, the function returns a Deferred which resolves to a Dict mapping from
input key to output value.
"""
def __init__(
self,
orig: Callable[..., Awaitable[Dict]],
cached_method_name: str,
list_name: str,
num_args: Optional[int] = None,
name: Optional[str] = None,
):
"""
Args:
orig
cached_method_name: The name of the cached method.
list_name: Name of the argument which is the bulk lookup list
num_args: number of positional arguments (excluding ``self``,
but including list_name) to use as cache keys. Defaults to all
named args of the function.
"""
super().__init__(orig, num_args=num_args, uncached_args=None, name=name)
self.list_name = list_name
self.list_pos = self.arg_names.index(self.list_name)
self.cached_method_name = cached_method_name
self.sentinel = object()
if self.list_name not in self.arg_names:
raise Exception(
"Couldn't see arguments %r for %r."
% (self.list_name, cached_method_name)
)
def __get__(
self, obj: Optional[Any], objtype: Optional[Type] = None
) -> Callable[..., "defer.Deferred[Dict[Hashable, Any]]"]:
cached_method = getattr(obj, self.cached_method_name)
cache: DeferredCache[CacheKey, Any] = cached_method.cache
num_args = cached_method.num_args
if num_args != self.num_args:
raise TypeError(
"Number of args (%s) does not match underlying cache_method_name=%s (%s)."
% (self.num_args, self.cached_method_name, num_args)
)
@functools.wraps(self.orig)
def wrapped(*args: Any, **kwargs: Any) -> "defer.Deferred[Dict]":
# If we're passed a cache_context then we'll want to call its
# invalidate() whenever we are invalidated
invalidate_callback = kwargs.pop("on_invalidate", None)
arg_dict = inspect.getcallargs(self.orig, obj, *args, **kwargs)
keyargs = [arg_dict[arg_nm] for arg_nm in self.arg_names]
list_args = arg_dict[self.list_name]
# If the cache takes a single arg then that is used as the key,
# otherwise a tuple is used.
if num_args == 1:
def arg_to_cache_key(arg: Hashable) -> Hashable:
return arg
def cache_key_to_arg(key: tuple) -> Hashable:
return key
else:
keylist = list(keyargs)
def arg_to_cache_key(arg: Hashable) -> Hashable:
keylist[self.list_pos] = arg
return tuple(keylist)
def cache_key_to_arg(key: tuple) -> Hashable:
return key[self.list_pos]
cache_keys = [arg_to_cache_key(arg) for arg in list_args]
immediate_results, pending_deferred, missing = cache.get_bulk(
cache_keys, callback=invalidate_callback
)
results = {cache_key_to_arg(key): v for key, v in immediate_results.items()}
cached_defers: List["defer.Deferred[Any]"] = []
if pending_deferred:
def update_results(r: Dict) -> None:
for k, v in r.items():
results[cache_key_to_arg(k)] = v
pending_deferred.addCallback(update_results)
cached_defers.append(pending_deferred)
if missing:
cache_entry = cache.start_bulk_input(missing, invalidate_callback)
def complete_all(res: Dict[Hashable, Any]) -> None:
missing_results = {}
for key in missing:
arg = cache_key_to_arg(key)
val = res.get(arg, None)
results[arg] = val
missing_results[key] = val
cache_entry.complete_bulk(cache, missing_results)
def errback_all(f: Failure) -> None:
cache_entry.error_bulk(cache, missing, f)
args_to_call = dict(arg_dict)
args_to_call[self.list_name] = {
cache_key_to_arg(key) for key in missing
}
# dispatch the call, and attach the two handlers
missing_d = defer.maybeDeferred(
preserve_fn(self.orig), **args_to_call
).addCallbacks(complete_all, errback_all)
cached_defers.append(missing_d)
if cached_defers:
d = defer.gatherResults(cached_defers, consumeErrors=True).addCallbacks(
lambda _: results, unwrapFirstError
)
if missing:
# We started a new call to `self.orig`, so we must always wait for it to
# complete. Otherwise we might mark our current logging context as
# finished while `self.orig` is still using it in the background.
d = delay_cancellation(d)
return make_deferred_yieldable(d)
else:
return defer.succeed(results)
obj.__dict__[self.name] = wrapped
return wrapped
class _CacheContext:
"""Holds cache information from the cached function higher in the calling order.
Can be used to invalidate the higher level cache entry if something changes
on a lower level.
"""
Cache = Union[DeferredCache, LruCache]
_cache_context_objects: """WeakValueDictionary[
Tuple["_CacheContext.Cache", CacheKey], "_CacheContext"
]""" = WeakValueDictionary()
def __init__(self, cache: "_CacheContext.Cache", cache_key: CacheKey) -> None:
self._cache = cache
self._cache_key = cache_key
def invalidate(self) -> None:
"""Invalidates the cache entry referred to by the context."""
self._cache.invalidate(self._cache_key)
@classmethod
def get_instance(
cls, cache: "_CacheContext.Cache", cache_key: CacheKey
) -> "_CacheContext":
"""Returns an instance constructed with the given arguments.
A new instance is only created if none already exists.
"""
# We make sure there are no identical _CacheContext instances. This is
# important in particular to dedupe when we add callbacks to lru cache
# nodes, otherwise the number of callbacks would grow.
return cls._cache_context_objects.setdefault(
(cache, cache_key), cls(cache, cache_key)
)
def cached(
*,
max_entries: int = 1000,
num_args: Optional[int] = None,
uncached_args: Optional[Collection[str]] = None,
tree: bool = False,
cache_context: bool = False,
iterable: bool = False,
prune_unread_entries: bool = True,
name: Optional[str] = None,
) -> Callable[[F], CachedFunction[F]]:
func = lambda orig: DeferredCacheDescriptor(
orig,
max_entries=max_entries,
num_args=num_args,
uncached_args=uncached_args,
tree=tree,
cache_context=cache_context,
iterable=iterable,
prune_unread_entries=prune_unread_entries,
name=name,
)
return cast(Callable[[F], CachedFunction[F]], func)
def cachedList(
*,
cached_method_name: str,
list_name: str,
num_args: Optional[int] = None,
name: Optional[str] = None,
) -> Callable[[F], CachedFunction[F]]:
"""Creates a descriptor that wraps a function in a `DeferredCacheListDescriptor`.
Used to do batch lookups for an already created cache. One of the arguments
is specified as a list that is iterated through to lookup keys in the
original cache. A new tuple consisting of the (deduplicated) keys that weren't in
the cache gets passed to the original function, which is expected to results
in a map of key to value for each passed value. THe new results are stored in the
original cache. Note that any missing values are cached as None.
Args:
cached_method_name: The name of the single-item lookup method.
This is only used to find the cache to use.
list_name: The name of the argument that is the iterable to use to
do batch lookups in the cache.
num_args: Number of arguments to use as the key in the cache
(including list_name). Defaults to all named parameters.
Example:
class Example:
@cached()
def do_something(self, first_arg, second_arg):
...
@cachedList(cached_method_name="do_something", list_name="second_args")
def batch_do_something(self, first_arg, second_args):
...
"""
func = lambda orig: DeferredCacheListDescriptor(
orig,
cached_method_name=cached_method_name,
list_name=list_name,
num_args=num_args,
name=name,
)
return cast(Callable[[F], CachedFunction[F]], func)
def _get_cache_key_builder(
param_names: Sequence[str],
include_params: Sequence[bool],
param_defaults: Mapping[str, Any],
) -> Callable[[Sequence[Any], Mapping[str, Any]], CacheKey]:
"""Construct a function which will build cache keys suitable for a cached function
Args:
param_names: list of formal parameter names for the cached function
include_params: list of bools of whether to include the parameter name in the cache key
param_defaults: a mapping from parameter name to default value for that param
Returns:
A function which will take an (args, kwargs) pair and return a cache key
"""
# By default our cache key is a tuple, but if there is only one item
# then don't bother wrapping in a tuple. This is to save memory.
if len(param_names) == 1:
nm = param_names[0]
assert include_params[0] is True
def get_cache_key(args: Sequence[Any], kwargs: Mapping[str, Any]) -> CacheKey:
if nm in kwargs:
return kwargs[nm]
elif len(args):
return args[0]
else:
return param_defaults[nm]
else:
def get_cache_key(args: Sequence[Any], kwargs: Mapping[str, Any]) -> CacheKey:
return tuple(
_get_cache_key_gen(
param_names, include_params, param_defaults, args, kwargs
)
)
return get_cache_key
def _get_cache_key_gen(
param_names: Iterable[str],
include_params: Iterable[bool],
param_defaults: Mapping[str, Any],
args: Sequence[Any],
kwargs: Mapping[str, Any],
) -> Iterable[Any]:
"""Given some args/kwargs return a generator that resolves into
the cache_key.
This is essentially the same operation as `inspect.getcallargs`, but optimised so
that we don't need to inspect the target function for each call.
"""
# We loop through each arg name, looking up if its in the `kwargs`,
# otherwise using the next argument in `args`. If there are no more
# args then we try looking the arg name up in the defaults.
pos = 0
for nm, inc in zip(param_names, include_params):
if nm in kwargs:
if inc:
yield kwargs[nm]
elif pos < len(args):
if inc:
yield args[pos]
pos += 1
else:
if inc:
yield param_defaults[nm]