-
Notifications
You must be signed in to change notification settings - Fork 14
/
main.odin
845 lines (704 loc) · 18 KB
/
main.odin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
package main
import "core:fmt"
import "core:strconv"
import "core:mem"
import "core:bits"
import "core:hash"
import "core:math"
import "core:math/rand"
import "core:os"
import "core:sort"
import "core:strings"
import "core:types"
import "core:unicode/utf16"
import "core:unicode/utf8"
import "core:c"
import "core:runtime"
when os.OS == "windows" {
import "core:thread"
import "core:sys/win32"
}
@(link_name="general_stuff")
general_stuff :: proc() {
fmt.println("# general_stuff");
{ // `do` for inline statements rather than block
foo :: proc() do fmt.println("Foo!");
if false do foo();
for false do foo();
when false do foo();
if false do foo();
else do foo();
}
{ // Removal of `++` and `--` (again)
x: int;
x += 1;
x -= 1;
}
{ // Casting syntaxes
i := i32(137);
ptr := &i;
_ = (^f32)(ptr);
// ^f32(ptr) == ^(f32(ptr))
_ = cast(^f32)ptr;
_ = (^f32)(ptr)^;
_ = (cast(^f32)ptr)^;
// Questions: Should there be two ways to do it?
}
/*
* Remove *_val_of built-in procedures
* size_of, align_of, offset_of
* type_of, type_info_of
*/
{ // `expand_to_tuple` built-in procedure
Foo :: struct {
x: int,
b: bool,
}
f := Foo{137, true};
x, b := expand_to_tuple(f);
fmt.println(f);
fmt.println(x, b);
fmt.println(expand_to_tuple(f));
}
{
// .. open range
for in 0..2 {} // 0, 1, 2
}
{ // Multiple sized booleans
x0: bool; // default
x1: b8 = true;
x2: b16 = false;
x3: b32 = true;
x4: b64 = false;
fmt.printf("x0: %T = %v;\n", x0, x0);
fmt.printf("x1: %T = %v;\n", x1, x1);
fmt.printf("x2: %T = %v;\n", x2, x2);
fmt.printf("x3: %T = %v;\n", x3, x3);
fmt.printf("x4: %T = %v;\n", x4, x4);
// Having specific sized booleans is very useful when dealing with foreign code
// and to enforce specific alignment for a boolean, especially within a struct
}
{ // `distinct` types
// Originally, all type declarations would create a distinct type unless #type_alias was present.
// Now the behaviour has been reversed. All type declarations create a type alias unless `distinct` is present.
// If the type expression is `struct`, `union`, `enum`, `proc`, or `bit_field`, the types will always been distinct.
Int32 :: i32;
#assert(Int32 == i32);
My_Int32 :: distinct i32;
#assert(My_Int32 != i32);
My_Struct :: struct{x: int};
#assert(My_Struct != struct{x: int});
}
{
X :: 123;
when #defined(X) {
fmt.println("X is defined");
} else {
fmt.println("X is not defined");
}
when #defined(Y) {
fmt.println("Y is defined");
} else {
fmt.println("Y is not defined");
}
}
}
union_type :: proc() {
fmt.println("\n# union_type");
{
val: union{int, bool};
val = 137;
if i, ok := val.(int); ok {
fmt.println(i);
}
val = true;
fmt.println(val);
val = nil;
switch v in val {
case int: fmt.println("int", v);
case bool: fmt.println("bool", v);
case: fmt.println("nil");
}
}
{
// There is a duality between `any` and `union`
// An `any` has a pointer to the data and allows for any type (open)
// A `union` has as binary blob to store the data and allows only certain types (closed)
// The following code is with `any` but has the same syntax
val: any;
val = 137;
if i, ok := val.(int); ok {
fmt.println(i);
}
val = true;
fmt.println(val);
val = nil;
switch v in val {
case int: fmt.println("int", v);
case bool: fmt.println("bool", v);
case: fmt.println("nil");
}
}
Vector3 :: struct {x, y, z: f32};
Quaternion :: struct {x, y, z, w: f32};
// More realistic examples
{
// NOTE(bill): For the above basic examples, you may not have any
// particular use for it. However, my main use for them is not for these
// simple cases. My main use is for hierarchical types. Many prefer
// subtyping, embedding the base data into the derived types. Below is
// an example of this for a basic game Entity.
Entity :: struct {
id: u64,
name: string,
position: Vector3,
orientation: Quaternion,
derived: any,
}
Frog :: struct {
using entity: Entity,
jump_height: f32,
}
Monster :: struct {
using entity: Entity,
is_robot: bool,
is_zombie: bool,
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc($T: typeid) -> ^Entity {
t := new(T);
t.derived = t^;
return t;
}
entity := new_entity(Monster);
switch e in entity.derived {
case Frog:
fmt.println("Ribbit");
case Monster:
if e.is_robot do fmt.println("Robotic");
if e.is_zombie do fmt.println("Grrrr!");
}
}
{
// NOTE(bill): A union can be used to achieve something similar. Instead
// of embedding the base data into the derived types, the derived data
// in embedded into the base type. Below is the same example of the
// basic game Entity but using an union.
Entity :: struct {
id: u64,
name: string,
position: Vector3,
orientation: Quaternion,
derived: union {Frog, Monster},
}
Frog :: struct {
using entity: ^Entity,
jump_height: f32,
}
Monster :: struct {
using entity: ^Entity,
is_robot: bool,
is_zombie: bool,
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc($T: typeid) -> ^Entity {
t := new(Entity);
t.derived = T{entity = t};
return t;
}
entity := new_entity(Monster);
switch e in entity.derived {
case Frog:
fmt.println("Ribbit");
case Monster:
if e.is_robot do fmt.println("Robotic");
if e.is_zombie do fmt.println("Grrrr!");
}
// NOTE(bill): As you can see, the usage code has not changed, only its
// memory layout. Both approaches have their own advantages but they can
// be used together to achieve different results. The subtyping approach
// can allow for a greater control of the memory layout and memory
// allocation, e.g. storing the derivatives together. However, this is
// also its disadvantage. You must either preallocate arrays for each
// derivative separation (which can be easily missed) or preallocate a
// bunch of "raw" memory; determining the maximum size of the derived
// types would require the aid of metaprogramming. Unions solve this
// particular problem as the data is stored with the base data.
// Therefore, it is possible to preallocate, e.g. [100]Entity.
// It should be noted that the union approach can have the same memory
// layout as the any and with the same type restrictions by using a
// pointer type for the derivatives.
/*
Entity :: struct {
..
derived: union{^Frog, ^Monster},
}
Frog :: struct {
using entity: Entity,
..
}
Monster :: struct {
using entity: Entity,
..
}
new_entity :: proc(T: type) -> ^Entity {
t := new(T);
t.derived = t;
return t;
}
*/
}
}
parametric_polymorphism :: proc() {
fmt.println("# parametric_polymorphism");
print_value :: proc(value: $T) {
fmt.printf("print_value: %T %v\n", value, value);
}
v1: int = 1;
v2: f32 = 2.1;
v3: f64 = 3.14;
v4: string = "message";
print_value(v1);
print_value(v2);
print_value(v3);
print_value(v4);
fmt.println();
add :: proc(p, q: $T) -> T {
x: T = p + q;
return x;
}
a := add(3, 4);
fmt.printf("a: %T = %v\n", a, a);
b := add(3.2, 4.3);
fmt.printf("b: %T = %v\n", b, b);
// This is how `new` is implemented
alloc_type :: proc($T: typeid) -> ^T {
t := cast(^T)alloc(size_of(T), align_of(T));
t^ = T{}; // Use default initialization value
return t;
}
copy_slice :: proc(dst, src: []$T) -> int {
n := min(len(dst), len(src));
if n > 0 {
mem.copy(&dst[0], &src[0], n*size_of(T));
}
return n;
}
double_params :: proc(a: $A, b: $B) -> A {
return a + A(b);
}
fmt.println(double_params(12, 1.345));
{ // Polymorphic Types and Type Specialization
Table_Slot :: struct(Key, Value: typeid) {
occupied: bool,
hash: u32,
key: Key,
value: Value,
}
TABLE_SIZE_MIN :: 32;
Table :: struct(Key, Value: typeid) {
count: int,
allocator: mem.Allocator,
slots: []Table_Slot(Key, Value),
}
// Only allow types that are specializations of a (polymorphic) slice
make_slice :: proc($T: typeid/[]$E, len: int) -> T {
return make(T, len);
}
// Only allow types that are specializations of `Table`
allocate :: proc(table: ^$T/Table, capacity: int) {
c := context;
if table.allocator.procedure != nil do c.allocator = table.allocator;
context = c;
table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN));
}
expand :: proc(table: ^$T/Table) {
c := context;
if table.allocator.procedure != nil do c.allocator = table.allocator;
context = c;
old_slots := table.slots;
defer delete(old_slots);
cap := max(2*len(table.slots), TABLE_SIZE_MIN);
allocate(table, cap);
for s in old_slots do if s.occupied {
put(table, s.key, s.value);
}
}
// Polymorphic determination of a polymorphic struct
// put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
hash := get_hash(key); // Ad-hoc method which would fail in a different scope
index := find_index(table, key, hash);
if index < 0 {
if f64(table.count) >= 0.75*f64(len(table.slots)) {
expand(table);
}
assert(table.count <= len(table.slots));
hash := get_hash(key);
index = int(hash % u32(len(table.slots)));
for table.slots[index].occupied {
if index += 1; index >= len(table.slots) {
index = 0;
}
}
table.count += 1;
}
slot := &table.slots[index];
slot.occupied = true;
slot.hash = hash;
slot.key = key;
slot.value = value;
}
// find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
hash := get_hash(key);
index := find_index(table, key, hash);
if index < 0 {
return Value{}, false;
}
return table.slots[index].value, true;
}
find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
if len(table.slots) <= 0 do return -1;
index := int(hash % u32(len(table.slots)));
for table.slots[index].occupied {
if table.slots[index].hash == hash {
if table.slots[index].key == key {
return index;
}
}
if index += 1; index >= len(table.slots) {
index = 0;
}
}
return -1;
}
get_hash :: proc(s: string) -> u32 { // fnv32a
h: u32 = 0x811c9dc5;
for i in 0..len(s)-1 {
h = (h ~ u32(s[i])) * 0x01000193;
}
return h;
}
table: Table(string, int);
for i in 0..36 do put(&table, "Hellope", i);
for i in 0..42 do put(&table, "World!", i);
found, _ := find(&table, "Hellope");
fmt.printf("`found` is %v\n", found);
found, _ = find(&table, "World!");
fmt.printf("`found` is %v\n", found);
// I would not personally design a hash table like this in production
// but this is a nice basic example
// A better approach would either use a `u64` or equivalent for the key
// and let the user specify the hashing function or make the user store
// the hashing procedure with the table
}
{ // Parametric polymorphic union
Error :: enum {
Foo0,
Foo1,
Foo2,
Foo3,
}
Para_Union :: union(T: typeid) {T, Error};
r: Para_Union(int);
fmt.println(typeid_of(type_of(r)));
fmt.println(r);
r = 123;
fmt.println(r);
r = Error.Foo0;
fmt.println(r);
}
{ // Polymorphic names
foo :: proc($N: $I, $T: typeid) -> (res: [N]T) {
// `N` is the constant value passed
// `I` is the type of N
// `T` is the type passed
fmt.printf("Generating an array of type %v from the value %v of type %v\n",
typeid_of(type_of(res)), N, typeid_of(I));
for i in 0..N-1 {
res[i] = i*i;
}
return;
}
T :: int;
array := foo(4, T);
for v, i in array {
assert(v == T(i*i));
}
}
}
prefix_table := [?]string{
"White",
"Red",
"Green",
"Blue",
"Octarine",
"Black",
};
threading_example :: proc() {
when os.OS == "windows" {
fmt.println("# threading_example");
unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
runtime.bounds_check_error_loc(loc, index, len(array));
n := len(array)-1;
if index != n {
array[index] = array[n];
}
pop(array);
}
ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
runtime.bounds_check_error_loc(loc, index, len(array));
copy(array[index:], array[index+1:]);
pop(array);
}
worker_proc :: proc(t: ^thread.Thread) -> int {
for iteration in 1..5 {
fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
// win32.sleep(1);
}
return 0;
}
threads := make([dynamic]^thread.Thread, 0, len(prefix_table));
defer delete(threads);
for in prefix_table {
if t := thread.create(worker_proc); t != nil {
t.init_context = context;
t.use_init_context = true;
t.user_index = len(threads);
append(&threads, t);
thread.start(t);
}
}
for len(threads) > 0 {
for i := 0; i < len(threads); /**/ {
if t := threads[i]; thread.is_done(t) {
fmt.printf("Thread %d is done\n", t.user_index);
thread.destroy(t);
ordered_remove(&threads, i);
} else {
i += 1;
}
}
}
}
}
array_programming :: proc() {
fmt.println("# array_programming");
{
a := [3]f32{1, 2, 3};
b := [3]f32{5, 6, 7};
c := a * b;
d := a + b;
e := 1 + (c - d) / 2;
fmt.printf("%.1f\n", e); // [0.5, 3.0, 6.5]
}
{
a := [3]f32{1, 2, 3};
b := swizzle(a, 2, 1, 0);
assert(b == [3]f32{3, 2, 1});
c := swizzle(a, 0, 0);
assert(c == [2]f32{1, 1});
assert(c == 1);
}
{
Vector3 :: distinct [3]f32;
a := Vector3{1, 2, 3};
b := Vector3{5, 6, 7};
c := (a * b)/2 + 1;
d := c.x + c.y + c.z;
fmt.printf("%.1f\n", d); // 22.0
cross :: proc(a, b: Vector3) -> Vector3 {
i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
return i - j;
}
blah :: proc(a: Vector3) -> f32 {
return a.x + a.y + a.z;
}
x := cross(a, b);
fmt.println(x);
fmt.println(blah(x));
}
}
named_proc_return_parameters :: proc() {
fmt.println("# named proc return parameters");
foo0 :: proc() -> int {
return 123;
}
foo1 :: proc() -> (a: int) {
a = 123;
return;
}
foo2 :: proc() -> (a, b: int) {
// Named return values act like variables within the scope
a = 321;
b = 567;
return b, a;
}
fmt.println("foo0 =", foo0()); // 123
fmt.println("foo1 =", foo1()); // 123
fmt.println("foo2 =", foo2()); // 567 321
}
using_enum :: proc() {
fmt.println("# using enum");
using Foo :: enum {A, B, C};
f0 := A;
f1 := B;
f2 := C;
fmt.println(f0, f1, f2);
fmt.println(len(Foo));
// Non-comparsion operations are not allowed with enum
// You must convert to an integer if you want to do this
// x := f0 + f1;
y := int(f0) + int(f1);
}
explicit_procedure_overloading :: proc() {
fmt.println("# explicit procedure overloading");
add_ints :: proc(a, b: int) -> int {
x := a + b;
fmt.println("add_ints", x);
return x;
}
add_floats :: proc(a, b: f32) -> f32 {
x := a + b;
fmt.println("add_floats", x);
return x;
}
add_numbers :: proc(a: int, b: f32, c: u8) -> int {
x := int(a) + int(b) + int(c);
fmt.println("add_numbers", x);
return x;
}
add :: proc[add_ints, add_floats, add_numbers];
add(int(1), int(2));
add(f32(1), f32(2));
add(int(1), f32(2), u8(3));
add(1, 2); // untyped ints coerce to int tighter than f32
add(1.0, 2.0); // untyped floats coerce to f32 tighter than int
add(1, 2, 3); // three parameters
// Ambiguous answers
// add(1.0, 2);
// add(1, 2.0);
}
complete_switch :: proc() {
fmt.println("# complete_switch");
{ // enum
using Foo :: enum {
A,
B,
C,
D,
}
b := Foo.B;
f := Foo.A;
#complete switch f {
case A: fmt.println("A");
case B: fmt.println("B");
case C: fmt.println("C");
case D: fmt.println("D");
case: fmt.println("?");
}
}
{ // union
Foo :: union {int, bool};
f: Foo = 123;
#complete switch in f {
case int: fmt.println("int");
case bool: fmt.println("bool");
case:
}
}
}
cstring_example :: proc() {
W :: "Hellope";
X :: cstring(W);
Y :: string(X);
w := W;
x: cstring = X;
y: string = Y;
z := string(x);
fmt.println(x, y, z);
fmt.println(len(x), len(y), len(z));
fmt.println(len(W), len(X), len(Y));
// IMPORTANT NOTE for cstring variables
// len(cstring) is O(N)
// cast(cstring)string is O(N)
}
deprecated_attribute :: proc() {
@(deprecated="Use foo_v2 instead")
foo_v1 :: proc(x: int) {
fmt.println("foo_v1");
}
foo_v2 :: proc(x: int) {
fmt.println("foo_v2");
}
// NOTE: Uncomment to see the warning messages
// foo_v1(1);
}
bit_set_type :: proc() {
{
using Day :: enum {
Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
}
Days :: distinct bit_set[Day];
WEEKEND :: Days{Sunday, Saturday};
d: Days;
d = {Sunday, Monday};
x := Tuesday;
e := d | WEEKEND;
e |= {Monday};
fmt.println(d, e);
ok := Saturday in e; // `in` is only allowed for `map` and `bit_set` types
fmt.println(ok);
if Saturday in e {
fmt.println("Saturday in", e);
}
X :: Saturday in WEEKEND; // Constant evaluation
fmt.println(X);
}
{
x: bit_set['A'..'Z'];
assert(size_of(x) == size_of(u32));
y: bit_set[0..8; u16];
fmt.println(typeid_of(type_of(x))); // bit_set[A..Z]
fmt.println(typeid_of(type_of(y))); // bit_set[0..8; u16]
incl(&x, 'F');
assert('F' in x);
excl(&x, 'F');
assert(!('F' in x));
y |= {1, 4, 2};
assert(2 in y);
}
}
diverging_procedures :: proc() {
// Diverging procedures may never return
foo :: proc() -> ! {
fmt.println("I'm a diverging procedure");
}
foo();
}
main :: proc() {
when true {
general_stuff();
union_type();
parametric_polymorphism();
threading_example();
array_programming();
named_proc_return_parameters();
using_enum();
explicit_procedure_overloading();
complete_switch();
cstring_example();
deprecated_attribute();
bit_set_type();
diverging_procedures();
}
}