-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·315 lines (234 loc) · 8.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python3
"""Utilites."""
import argparse
import fnmatch
import numpy as np
import numpy.linalg as la
import pyopencl as cl
import pyopencl.clmath # noqa
import pytest
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
from boxtree.area_query import AreaQueryElementwiseTemplate
from functools import partial
from meshmode.mesh.generation import make_curve_mesh, NArmedStarfish
from pytential import bind, sym, norm
from pytools import memoize
import logging
import multiprocessing
# logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# {{{ neighborhood counter
NeighborhoodCounter = AreaQueryElementwiseTemplate(
extra_args=r"""
/* input */
particle_id_t *box_source_starts,
particle_id_t *box_source_counts,
coord_t *search_radii,
/* output */
int *sizes,
/* input, dim-dependent length */
%for ax in AXIS_NAMES[:dimensions]:
coord_t *sources_${ax},
%endfor
%for ax in AXIS_NAMES[:dimensions]:
coord_t *centers_${ax},
%endfor
""",
ball_center_and_radius_expr=r"""
%for ax in AXIS_NAMES[:dimensions]:
${ball_center}.${ax} = centers_${ax}[i];
%endfor
${ball_radius} = search_radii[i];
""",
leaf_found_op=r"""
for (int j = 0; j < box_source_counts[${leaf_box_id}]; ++j)
{
particle_id_t source_idx = box_source_starts[${leaf_box_id}] + j;
coord_t dist = 0;
%for ax in AXIS_NAMES[:dimensions]:
dist = fmax(dist, fabs(sources_${ax}[source_idx] - centers_${ax}[i]));
%endfor
if (dist > search_radii[i]) {
continue;
}
++sizes[i];
}
""",
name="count_neighborhood_size")
# }}}
# {{{ get qbx center neighborhood sizes
def get_qbx_center_neighborhood_sizes(lpot_source, radius):
queue = cl.CommandQueue(lpot_source.cl_context)
def inspect_geo_data(insn, bound_expr, geo_data):
nonlocal sizes, nsources, ncenters
tree = geo_data.tree().with_queue(queue)
from boxtree.area_query import PeerListFinder
plf = PeerListFinder(queue.context)
pl, evt = plf(queue, tree)
# Perform an area query around each QBX center, counting the
# neighborhood sizes.
knl = NeighborhoodCounter.generate(
queue.context,
tree.dimensions,
tree.coord_dtype,
tree.box_id_dtype,
tree.box_id_dtype,
tree.nlevels,
extra_type_aliases=(('particle_id_t', tree.particle_id_dtype),))
centers = geo_data.centers()
search_radii = radius * geo_data.expansion_radii().with_queue(queue)
ncenters = len(search_radii)
nsources = tree.nsources
sizes = cl.array.zeros(queue, ncenters, np.int32)
assert nsources == lpot_source.quad_stage2_density_discr.nnodes
coords = []
coords.extend(tree.sources)
coords.extend(centers)
evt = knl(
*NeighborhoodCounter.unwrap_args(
tree,
pl,
tree.box_source_starts,
tree.box_source_counts_cumul,
search_radii,
sizes,
*coords),
range=slice(ncenters),
queue=queue,
wait_for=[evt])
cl.wait_for_events([evt])
return False # no need to do the actual FMM
sizes = None
nsources = None
ncenters = None
lpot_source = lpot_source.copy(geometry_data_inspector=inspect_geo_data)
density_discr = lpot_source.density_discr
nodes = density_discr.nodes().with_queue(queue)
sigma = cl.clmath.sin(10 * nodes[0])
# The kernel doesn't really matter here
from sumpy.kernel import LaplaceKernel
sigma_sym = sym.var('sigma')
k_sym = LaplaceKernel(lpot_source.ambient_dim)
sym_op = sym.S(k_sym, sigma_sym, qbx_forced_limit=+1)
bound_op = bind(lpot_source, sym_op)
bound_op(queue, sigma=sigma)
return (sizes.get(queue), nsources, ncenters)
# }}}
# {{{ get qbx center neighborhood sizes, directly evaluated version
def get_qbx_center_neighborhood_sizes_direct(lpot_source, radius):
queue = cl.CommandQueue(lpot_source.cl_context)
def inspect_geo_data(insn, bound_expr, geo_data):
nonlocal sizes, nsources, ncenters
tree = geo_data.tree().with_queue(queue)
centers = np.array([axis.get(queue) for axis in geo_data.centers()])
search_radii = radius * geo_data.expansion_radii().get(queue)
sources = np.array([axis.get(queue) for axis in tree.sources])
ncenters = len(search_radii)
nsources = tree.nsources
assert nsources == lpot_source.quad_stage2_density_discr.nnodes
center_to_source_dists = (
la.norm(
(centers[:, np.newaxis, :] - sources[:, :, np.newaxis]).T,
ord=np.inf,
axis=-1))
sizes = np.count_nonzero(
center_to_source_dists <= search_radii[:, np.newaxis],
axis=1)
return False # no need to do the actual FMM
sizes = None
nsources = None
ncenters = None
lpot_source = lpot_source.copy(geometry_data_inspector=inspect_geo_data)
density_discr = lpot_source.density_discr
nodes = density_discr.nodes().with_queue(queue)
sigma = cl.clmath.sin(10 * nodes[0])
# The kernel doesn't really matter here
from sumpy.kernel import LaplaceKernel
sigma_sym = sym.var('sigma')
k_sym = LaplaceKernel(lpot_source.ambient_dim)
sym_op = sym.S(k_sym, sigma_sym, qbx_forced_limit=+1)
bound_op = bind(lpot_source, sym_op)
bound_op(queue, sigma=sigma)
return (sizes, nsources, ncenters)
# }}}
# {{{ neighborhood size counter test
def test_get_qbx_center_neighborhood_sizes(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
from meshmode.discretization import Discretization
from meshmode.discretization.poly_element import (
InterpolatoryQuadratureSimplexGroupFactory)
target_order = 8
n_arms = 5
nelements = 50 * n_arms
mesh = make_curve_mesh(
NArmedStarfish(n_arms, 0.8),
np.linspace(0, 1, nelements+1),
target_order)
pre_density_discr = Discretization(
queue.context, mesh,
InterpolatoryQuadratureSimplexGroupFactory(target_order))
from pytential.qbx import QBXLayerPotentialSource
lpot_source, _ = QBXLayerPotentialSource(
pre_density_discr, 4 * target_order,
_max_leaf_refine_weight=64,
target_association_tolerance=1e-3,
).with_refinement()
t_f = 0.9
result_direct = get_qbx_center_neighborhood_sizes_direct(lpot_source, 8/t_f)
result_aq = get_qbx_center_neighborhood_sizes(lpot_source, 8/t_f)
assert (result_direct[0] == result_aq[0]).all()
assert result_direct[1] == result_aq[1]
assert result_direct[2] == result_aq[2]
# }}}
# {{{ parse args
def parse_args(description, experiments):
names = [" - '%s'" % name for name in experiments]
epilog = "\n".join(["experiment names:"] + names)
parser = argparse.ArgumentParser(
description=description,
epilog=epilog,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
"-x",
metavar="experiment-name",
action="append",
dest="experiments",
default=[],
help="Adds an experiment to the list to be run "
"(accepts wildcards) (may be given multiple times)")
parser.add_argument(
"--all",
action="store_true",
dest="run_all",
help="Runs all experiments")
parser.add_argument(
"--except",
action="append",
metavar="experiment-name",
dest="run_except",
default=[],
help="Removes an experiment from the list to be run "
"(accepts wildcards) (may be given multiple times)")
parse_result = parser.parse_args()
result = set()
if parse_result.run_all:
result = set(experiments)
for experiment in experiments:
for pat in parse_result.experiments:
if fnmatch.fnmatch(experiment, pat):
result.add(experiment)
continue
to_discard = set()
for experiment in experiments:
for pat in parse_result.run_except:
if fnmatch.fnmatch(experiment, pat):
to_discard.add(experiment)
continue
result -= to_discard
return result
# }}}
if __name__ == "__main__":
pytest.main([__file__])
# vim: foldmethod=marker