-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_directory.py
21 lines (15 loc) · 984 Bytes
/
convert_directory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from data_utils.parse_files import *
import config.nn_config as nn_config
config = nn_config.get_neural_net_configuration()
# Here, the freq, input_directory and output_filename are initialized as per the configured neural network
input_directory = config['dataset_directory']
output_filename = config['model_file']
freq = config['sampling_frequency'] # sample frequency in Hz
# The author defines "clip_len", "block_size" and "max_seq_len"
clip_len = 10 # length of clips for training. Defined in seconds
block_size = freq / 4 # block sizes used for training - this defines the size of our input state
max_seq_len = int(round((freq * clip_len) / block_size)) # Used later for zero-padding song sequences
# Step 1 - convert MP3s to WAVs
new_directory = convert_folder_to_wav(input_directory, freq)
# Step 2 - convert WAVs to frequency domain with mean 0 and standard deviation of 1
convert_wav_files_to_nptensor(new_directory, block_size, max_seq_len, output_filename)