-
Notifications
You must be signed in to change notification settings - Fork 0
/
Text_S1.tex
executable file
·948 lines (897 loc) · 45.4 KB
/
Text_S1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
\documentclass[a4paper,10pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{longtable}
\usepackage{rotating}
\usepackage{subfigure}
\usepackage{multirow}
\usepackage{amssymb}
\usepackage{indentfirst}
\usepackage{float}
\usepackage{listings}
\usepackage{url}
\usepackage{cite}
\usepackage{amsmath}
\usepackage{xcite} % Cite stuff from the main text
\usepackage{xr} % automatic cross-referencing
\usepackage[authoryear,round]{natbib}
\bibliographystyle{apalike}
%%% Supp Mat modifications
\renewcommand\refname{Further References}
\externaldocument{FMDV_AMERICA}
\externalcitedocument[M-]{FMDV_AMERICA}
\renewcommand{\thesubfigure}{(\Alph{subfigure})}
\renewcommand{\thetable}{S\arabic{table}}
\renewcommand{\thefigure}{S\arabic{figure}}
%%%% XML syntax highlighting
\usepackage{color}
\definecolor{gray}{rgb}{0.4,0.4,0.4}
\definecolor{darkblue}{rgb}{0.0,0.0,0.6}
\definecolor{cyan}{rgb}{0.0,0.6,0.6}
\lstset{
basicstyle=\ttfamily,
columns=fullflexible,
showstringspaces=false,
commentstyle=\color{gray}\upshape
}
\lstdefinelanguage{XML}
{
morestring=[b]",
morestring=[s]{>}{<},
morecomment=[s]{<?}{?>},
stringstyle=\color{black},
identifierstyle=\color{darkblue},
keywordstyle=\color{cyan},
morekeywords={xmlns,version,type}% list your attributes here
}
%%%%%
\topmargin 0.0cm
\oddsidemargin 0.5cm
\evensidemargin 0.5cm
\textwidth 16cm
\textheight 21cm
\pagestyle{myheadings}
%%%%%
%opening
\title{Text S1 -- Supplementary information to ``Spatio-temporal Dynamics of Foot-and-Mouth Disease Virus in South America''}
\author{
Luiz Max Carvalho, Nuno Rodrigues Faria, Guido K\"onig,
Marc A. Suchard,\\
Philippe Lemey, Waldemir de Castro Silveira,\\
and Guy Baele
}
\date{November, 2019}
\begin{document}
\maketitle
\section*{Data collection and curation}
\subsection*{Sequence data}
In Tables~\ref{stab:sequences_A} and~\ref{stab:sequences_O} we provide the GenBank accession numbers, date and country of collection of all sequences used in this study.
\subsection*{Livestock trade data}
One of the main contributions of this study lies in exploring the association between the trade of cattle, pigs and sheep and viral diffusion using a statistically sound approach that enables us to test evolutionary hypotheses concerning the influence of these predictors on viral spread~\citep{M-Lemey2014}. %GB: cite Lemey et al. 2014
In this text, we provide some additional exploratory plots of the covariate data.
In Figure~\ref{sfig:prod}, we show the time series of livestock production among the studied countries for a time frame of over $50$ years, illustrating that the production of cattle is much larger than that of any other livestock. %GB: I think that a simple line plot, connecting the dots would make the figure more clear than drawing a straight regression line through the dots
Perhaps more importantly, while pigs and cattle production maintain a trend of positive growth throughout the second half of the twentieth century, sheep production shows a decline after $1990$.
Spatially, the trade of all three livestock is rather different, as shown in Figure~\ref{sfig:tradenets}. %GB: this figure is not very clear; would it not be better to use dot matrices, with the size of the dots proportional to the trade intensity? Or perhaps use the existing figure(s) but play with the width of the different arrows according to trade intensity?
% LM: I strongly disagree. But then again I'm biased; this took me a long time to code up and is clear enough to me. I'll wait to see whether this bothers others too.
The cattle trade network is more connected, while the pig and sheep trade networks are considerably more sparse.
Further, the pig network presents a clear regional pattern, with two sub-networks. %GB: clearly illustrate these two networks on the figure?
%LM: Good idea. Will see what I can do. Later.
Temporally, overall trade shows remarkably different trends depending on the livestock analysed.
While cattle trade shows a positive trend, pig trade is mostly stable over time and all other livestock considered show a declining trend.
The FAO trade matrix is sometimes inconsistent, i.e. the exports from country $i$ to country $j$ do not always correspond to the imports into country $j$ from country $i$.
In cases like these, we have picked the largest value for a given year and pair of countries $i$ and $j$.
\subsection*{Vaccination and case data}
We obtained the number of vaccine doses distributed in a given country in a given year starting from 1986 and ending in 2010 and divided this total by the number of live cattle produced per country and year.
We could not find information for the years of 1991 and 1996 and resorted to manually imputing the missing values for these years by taking the arithmetic mean of the two adjacent years.
This indicator is only a proxy for vaccination in the continent since (i) not all vaccines administered protect against all serotypes and (ii) cattle are not the only susceptible livestock.
We argue our choices are justified however, because (i) most vaccine doses were actually protective against all 3 serotypes (trivalent) and (ii) cattle are by far the most numerous livestock in South America and their vaccination is mandatory across all affected countries.
We obtained a temporal measure of vaccination by computing the average across the nine countries per year.
As a measure of dispersion, we employed the standard error, multiplied by the 95\% quantile of a Student t distribution with either $\nu = 8 -1 = 7$ or $\nu = 9-1 = 8$ degrees of freedom ($2.36$ and $2.31$, respectively).
We show these vaccination time series in Figure~\ref{sfig:vaccination_temporal}, where it can be observed that there is substantial heterogeneity across countries in terms of temporal vaccination pattern.
\section*{Analysis}
\subsection*{Maximum-likelihood phylogenies and root-to-tip divergences}
In order to preliminarily assess whether the data sets used in this study contain evidence of clock-like evolution, we construct unrooted phylogenies using the maximum-likelihood procedures implemented in PhyML 3.0~\citep{M-Guindon2003} under a GTR model~\citep{M-Tavare1986} of sequence evolution with gamma-distributed site rate heterogeneity. %GB: cite Yang 1994 or 1996
We root the trees at the branch -- as well as a position along it -- that minimises the sum of squared residuals of the linear regression of root-to-tip divergences (RDV) on the sampling times.
For this last step, we use the routines in the program TempEst~\citep{M-Rambaut2016}.
The resulting trend lines presented in Figure~\ref{sfig:root-to-tip} are consistent with clock-like evolution, despite considerable variation between lineages, which we address later in the paper using relaxed molecular clocks.
An initial RDV analysis indicated that some sequences collected for serotype O had evolutionary divergences incompatible with their dates, and these were excluded from subsequent analyses.
The excluded sequences are listed in Table~\ref{stab:exclseqs}.
\begin{table}[H]
\caption{\textbf{Sequences excluded from analysis.}
Serotype O sequences that displayed genetic divergences inconsistent with their sampling dates were excluded from analysis.
These were sequences with older dates that presented a much higher than expected number of mutations.
}
\begin{center}
\begin{tabular}{ccccccc}
\toprule
Accession & Year & Country \\
\midrule
AY593818 & 1958 & Brazil \\
AY593837 & 1963 & Uruguay \\
AY593820 & 1964 & Argentina \\
AY593814 & 1965 & Argentina \\
AY593821 & 1967 & Argentina \\
\bottomrule
\end{tabular}
\end{center}
\begin{flushleft}
\end{flushleft}
\label{stab:exclseqs}
\end{table}
\subsection*{Bayesian model selection}
We employed generalised stepping stone sampling (GSS, \citet{M-Baele2016}) to compute (log) marginal likelihoods for six combinations of Markov sequence evolution and molecular clock models. %GB: citation year is wrong, should be 2016
A constant population size coalescent tree prior was used across all combinations. %GB: the main manuscript seemed to suggest that the constant population size model was going to be compared against the Skygrid model using model selection
We used $50$ steps with $250,000$ iterations per step, with the resulting 51 power posteriors spaced according to a Beta($\alpha = 0.3$, 1.0) distribution. %GB: cite Xie et al. 2011 and Baele et al. 2016
Table~\ref{stab:treeclockselection} shows the results of this model selection study to determine the best combination of sequence substitution and molecular clock models for each serotype.
For serotype A, the model combination with the highest (log) marginal likelihood is a GTR sequence evolution model coupled with an uncorrelated relaxed clock assuming an underlying Gamma distribution (UCG), whereas for serotype O the best model combination was GTR and an uncorrelated relaxed clock assuming an underlying log-normal distribution (UCLN).
The quantile inversions for the Gamma relaxed clock model are very compute-intensive and computations for this model took much longer to finish.
In the interest of computational expediency for the large number of subsequent analyses we performed in this paper, we decided to use the UCLN model for serotype A as well.
\begin{table}[!ht]
\caption{\textbf{Log marginal likelihoods for combinations of sequence evolution (Markov) and molecular clock models.}
We used generalised stepping stone sampling (GSS) from~\citep{M-Baele2016} to compute (log) marginal likelihoods using a constant population size coalescent tree prior.
We compared the HKY and GTR substitution models, in combination with the strict clock and the uncorrelated relaxed clock models assuming either an underlying log-normal distribution (UCLN) or gamma distribution (UCG).
The best fitting model for each serotype is highlighted in bold.
}
\begin{center}
\begin{tabular}{cclc}
\hline
Serotype & Markov model & Clock model & log marginal likelihood \\
\hline
\multirow{6}{*}{A} & GTR & UCLN & -13649.55 \\
& GTR & UCG & \textbf{-13619.52} \\
& GTR & Strict & -13721.67 \\
& HKY & UCLN & -13668.54 \\
& HKY & UCG & -13664.53 \\
& HKY & Strict & -13760.31 \\
\hline
\multirow{6}{*}{O}& GTR & \multicolumn{1}{l}{UCLN} & \textbf{-9917.44} \\
\multicolumn{1}{l}{} & GTR & \multicolumn{1}{l}{UCG} & -9925.08 \\
\multicolumn{1}{l}{} & GTR & \multicolumn{1}{l}{Strict} & -10085.06 \\
\multicolumn{1}{l}{} & HKY & \multicolumn{1}{l}{UCLN} & -9959.38 \\
\multicolumn{1}{l}{} & HKY & \multicolumn{1}{l}{UCG} & -9955.12 \\
\multicolumn{1}{l}{} & HKY & \multicolumn{1}{l}{Strict} & -10102.83\\
\hline
\end{tabular}
\end{center}
\label{stab:treeclockselection}
\end{table}
\newpage
\subsection*{Temporal analysis -- accounting for preferential sampling}
Since our sample is likely to be biased temporally -- as well as spatially (but see below) --, we employ a population dynamics reconstruction method that allows accommodating the tip sampling structure, as well as the inclusion of temporal covariates~\citep{M-Karcher2020}.
The model of~\cite{M-Karcher2020} assumes sequences are collected according to a Poisson point process with intensity
\begin{equation}
\label{eq:skytrack}
\lambda_s(t) = \exp\left( \beta_0 + \beta_1\gamma(t) + \beta_2 f_1(t) + \beta_2 f_2(t) + \ldots + \beta_P f_P(t) + \left[\delta_2 f_2(t) + \ldots + \delta_P f_P(t) \right]\gamma(t) \right),
\end{equation}
where $\gamma(t)$ is the log population size at time $t$, the $\boldsymbol\beta$ are coefficients, $\mathcal{F} = \{f_1, f_2, \ldots, f_P\}$ are functions of interest and the $\boldsymbol\delta$ control interaction terms, which we do not use here.
Following~\cite{M-Karcher2020}, we consider four models:
\begin{enumerate}
\item \textbf{Model 0:} ``Naive'' model, in which sampling is not accounted for~\citep{Palacios2015}.
\item \textbf{Model 1:} Preferential model with $\lambda_s(t) = \exp(\beta_0 + \beta_1\gamma(t))$, denoted $\{\gamma(t)\}$~\citep{M-Karcher2016};
\item \textbf{Model 2:} Preferential model using $-t$ as a covariate, thus $\lambda_s(t) = \exp(\beta_0 + \beta_1\gamma(t) -\beta_2 t)$, denoted $\{\gamma(t), -t\}$;
\item \textbf{Model 3:} Preferential model using both $-t$ and $-t^2$ as covariates, thus $\lambda_s(t) = \exp(\beta_0 + \beta_1\gamma(t) -\beta_2 t - \beta_3t^2)$, denoted $\{\gamma(t), -t, -t^2\}$;
\end{enumerate}
These models were fitted using three maximum clade credibility (MCC) trees for each serotype, obtained from three independent chains. %GB: but ideally these 3 MCC trees should be identical, so this could raise some questions %LM: I beg to strongly differ. MCC trees are estimates and hence subject to variation. At this tree size, seeing to identical trees is extremely improbable.
Since results were consistent across MCC trees, we shall discuss only results for one MCC for each serotype.
Complete analyses can be found at~\url{https://github.com/maxbiostat/FMDV_AMERICA/blob/master/CODE/notebooks/BNPR_analysis_covariates.ipynb}.
In order to compare models, we employ (log) marginal likelihoods to compute (log) Bayes factors.
Model 0 does not use sampling data and thus is not directly comparable to the other models.
Models 1 and 2 can be seen as special cases of model 3, with suitably constructed, point-mass priors on the non-shared parameters.
Therefore, we compare models 1, 2 and 3 using the (log) marginal likelihood estimate provided by the underlying integrated nested Laplace approximation (INLA, \cite{Martins2013}), which is computed following~\citet{Hubin2016}.
\subsubsection*{Prior modelling}
% We follow the framework of~\cite{M-Gill2016} in order to incorporate information from temporal predictors into the reconstruction of past (effective) population size.
% This necessitates the specification of priors for the predictor coefficients ($\beta^{\text{Skygrid}}_i, i = 1, \ldots, 13$).
% We assign independent standard normal (Gaussian) priors, $\beta^{\text{Skygrid}}_i \sim \text{Normal}(0, 1)$.
The smoothness of the population trajectory in the Skygrid~\citep{M-Gill2013} %GB: incorrect citation year, should be 2013
and related models is controlled by a precision parameter, $\tau$, which needs to be estimated from the data and thus be given a prior.
The prior usually employed is a Gamma distribution with parameters $\alpha = \beta = 0.001$.
However, we feel this prior places too much mass on small precisions (which would make estimates noisier) while at the same time allowing rather extreme values, which would artificially inflate confidence.
We instead employ the penalised complexity (PC) prior from~\citet{M-Simpson2017} (pg.14), a density from the Gumbel type II family.
Let $a, b > 0$ be the shape and scale hyperparameters respectively; the probability density function is then
\begin{equation}
\pi_2(\tau \mid a, b) = ab \cdot \tau^{-a-1}\exp\left(-b\tau^{-a}\right),\: \tau > 0.
\end{equation}
The authors recommend $a = 1/2$ and $b$ to be chosen such that $Pr(1/\sqrt{\tau} > S) = p$, where the value $S$ and the probability $p$ are to be chosen on substantive grounds, such that $b = \ln(p)/S$.
Here we will choose $S = 1$ and $p = 0.1$, which is to say that the prior is constructed such that there is a $10\%$ probability that the standard deviation of the log-population sizes is greater than $1$.
This argument leads to $b = 2.302585$.
This prior has been implemented in BEAST 1.10~\citep{M-Suchard2018} and can be used with the Skygrid model by using the following XML syntax:
\lstset{language=XML}
\begin{center}
\begin{tabular}{c}
\begin{lstlisting}
<gumbelPrior shape="0.5" scale="2.30">
<parameter idref="skygrid.precision"/>
</gumbelPrior>
\end{lstlisting}
\end{tabular}
\end{center}
replacing the default XML block.
For the~\textbf{phylodyn} package~\citep{M-Karcher2017}, the PC prior is also implemented in this fork:~\url{https://github.com/maxbiostat/phylodyn}, and can be used by calling~\verb|BNPR(..., pc_prior = TRUE, S, p)| and~\verb|BNPR_PS(..., pc_prior = TRUE, S, p)|.
\subsubsection*{Simulations}
In order to understand how the sequence sampling structure of both serotypes (see Figure~\ref{sfig:sampling}) might influence results, we simulated four scenarios for each data set:
\begin{itemize}
\item[A)] Using the empirical sampling dates, simulate phylogenies under a constant population size with $N_e = 10$;
\item[B)] Using the empirical sampling dates, simulate phylogenies under an exponential growth model with $N_0 = 10$ and $r = 0.1$;
\item[C)] Using a regular grid of dates spanning the range of observed dates, simulate phylogenies under a constant population size with $N_e = 10$; %GB: what constitutes a 'regular grid'? %LM: Really?? Anyway, added explanation below.
\item[D)] Using a regular grid of dates spanning the range of observed dates, simulate phylogenies under an exponential growth model with $N_0 = 10$ and $r = 0.1$.
\end{itemize}
To construct a regular grid, we created a sequence of $N$ dates from youngest to oldest observed date, where $N$ is the number of sequences collected for each serotype.
For all scenarios, we simulated $10$ phylogenies for each serotype using the R package~\textbf{timeTreeSim} (\url{https://github.com/maxbiostat/timeTreeSim}).
We fitted the four models outlined above to all simulated data sets.
Since results were consistent across phylogenies, we will discuss results for a single representative simulation per scenario and serotype.
All simulations and analyses can be found at~\url{https://github.com/maxbiostat/FMDV_AMERICA/blob/master/CODE/notebooks/}.
Typical (representative) reconstructions obtained with all four models for each scenario are shown in Figures~\ref{sfig:reconplots_A} and~\ref{sfig:reconplots_O} for serotypes A and O, respectively.
According to these figures, the results are consistent across serotypes and preferential sampling (i.e. using the empirical dates of the sequences in this study) leads to noisier reconstructions.
In addition, we notice that when the true population trajectory is exponential growth, the preferential model ($\{\gamma(t)\}$) does not recover the true population trajectory, but a model that includes time as a covariate (e.g. $\{\gamma(t), -t\}$) does.
These results suggest that when population size changes over time, a preferential model that includes simple functions of calendar time can capture the true behaviour and lead to narrower credibility intervals (compare ``naive'' and $\{\gamma(t), -t\}$ models for all scenarios and both serotypes).
In terms of model comparison, Figure~\ref{sfig:BNPR_simu_marglikes} shows the estimated (log) marginal likelihoods for models 1, 2 and 3 for all four scenarios.
Again, results were consistent across serotypes.
For scenario A, model 1 ($ \{ \gamma(t) \}$) attains the (log) highest marginal likelihood for all replicates.
For scenario B, model 2 ($ \{ \gamma(t), -t\}$) performs best across replicates, likely because it is consistent with the exponential growth of the population.
For scenarios C and D, model 1 is again the best fit across all replicates, showing that model selection based on (log) marginal likelihoods is parsimonious in that the simplest of model (between models 1, 2 and 3) is selected in a situation with no preferential sampling.
\subsection*{Spatial analysis -- phylogeographic GLM}
In order to study the influence of several predictors on the spatial spread of FMDV in the continent, we employed a generalised linear model (GLM)~\citep{M-Lemey2014,M-Dudas2017}.
Let $P$ be the number of predictors -- in this study, $P = 12$ -- and $K$ be the number of locations -- here, $K = 8$ for serotype A and $K = 9$ for serotype O.
Moreover, let $\Lambda_{ij}$ be the transition rate between locations $i$ and $j$ and $\boldsymbol X_{ij}$ be the relevant row of design matrix.
Then:
\begin{align*}
\log \Lambda_{ij} &= \boldsymbol X_{ij}^T \boldsymbol\delta \boldsymbol{\beta}
+ \epsilon_i + \epsilon_j, \\
\epsilon_k &\sim \text{Normal}(0, \sigma^2) \text{ for } k = 1, \ldots, K, \text{with} \\
\sigma^2 &\sim \text{Inverse-Gamma}(0.001, 0.001),\\
\beta_j &\sim \text{Normal}(0, 16),
\end{align*}
where the $\boldsymbol\epsilon$ are location-specific origin and destination random effects~\citep{M-Dudas2017}.
$\boldsymbol\delta$ is a vector containing variables $\delta_i \in \{0, 1\}$ that describe whether predictor $i$ is included ($\delta_i = 1$) or excluded ($\delta_i = 0$) from the model and $\boldsymbol\beta$ are the regression coefficients.
Let $p_j$ be the \textit{prior} probability that predictor $j$ is included in the model.
Here we will make the simplifying assumption that $p_j = q$ for all $j$.
If we let $w$ be the probability that no predictors are included in the model, we obtain $q = 1 - w^{1/P}$.
We can then fit the model and compute the \textit{posterior} inclusion probability $\hat{\delta_j}$ from which we can compute the Bayes factor in support of the $j$-th predictor:
\begin{align*}
\text{BF}_j &= \frac{\hat{\delta_j} }{1-\hat{\delta_j} }/\frac{p_j}{1-p_j}, \\
&= \frac{\hat{\delta_j} (1 + w^{1/P})}{(1-\hat{\delta_j})(1 - w^{1/P}) }.
\end{align*}
In this study we choose $w = 1/2$ to enforce a parsimonious model.
See~\citet{M-KassRaftery1995} for how to interpret Bayes factors.
\bibliography{TEXTS2}
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=.80]{FIGURES/PLOTS/sampling_bubble_plot.pdf}
\end{center}
\caption{
\textbf{Spatio-temporal sampling pattern of the sequences used in this study.} Circle radius is proportional to number of sequences.
}
\label{sfig:sampling}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=.75]{FIGURES/PLOTS/rdvs.pdf}
\end{center}
\caption{
\textbf{Root-to-tip divergence against sampling time for serotypes A and O.}
Maximum likelihood phylogenies were constructed with PhyML version 3.0~\citep{M-Guindon2003}.
We root the trees such that the linear regression between the root-to-tip divergences and sampling times yields the smallest sum of squared residuals using the program TempEst~\citep{M-Rambaut2016}.
The linear trends, along with their 95\% prediction intervals (shaded) are shown.
}
\label{sfig:root-to-tip}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=.80]{FIGURES/PLOTS/production.pdf}
\end{center}
\caption{
\textbf{Production time series for several livestock in South America.}
We show $\log$(\#~of heads) of live animals for pigs, sheep and cattle, goat and horses.
}
\label{sfig:prod}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\subfigure[]{\includegraphics[scale=.600]{FIGURES/PLOTS/tradenets_cattle_s=0.pdf}}
\subfigure[]{\includegraphics[scale=.600]{FIGURES/PLOTS/tradenets_pig_s=0.pdf}} \\
\subfigure[]{\includegraphics[scale=.600]{FIGURES/PLOTS/tradenets_sheep_s=0.pdf}}
\end{center}
\caption{
\textbf{Spatial networks of livestock trade in South America.}
We represent the total trade of live animals from $1986$ to $2017$.
Arrows connect countries if there was a non-zero number of exchanges between them.
Colour scale represents total exports in number of live animals.
In agreement with the data presented in Figure~\ref{sfig:prod}, the cattle network is the most connected, indicating that not only the number of animals has increased, but also the migration of this particular host is more frequent.
Note the long range trade routes of sheep between Argentina and Colombia, which are absent from the pig network.
}
\label{sfig:tradenets}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=.80]{FIGURES/PLOTS/trade_through_time.pdf}
\end{center}
\caption{
\textbf{Overall livestock trade in South America through time.}
We show $\log$(\#~of heads) of live animals traded for pigs, sheep and cattle, goat and horses.
Solid lines are linear trends fitted using ordinary least squares.
}
\label{sfig:trade_temporal}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\subfigure[]{\includegraphics[scale=.600]{FIGURES/PLOTS/vaccination_per_country_time.pdf}} \\
\subfigure[]{\includegraphics[scale=.600]{FIGURES/PLOTS/vaccination_overall_time.pdf}}
\end{center}
\caption{
\textbf{FMD vaccination in South America through time.}
We show the number of vaccine doses per cattle head per country (Panel a) and overall (Panel b).
In panel b the solid line shows the average and the dashed lines show Student t empirical intervals (see text).
}
\label{sfig:vaccination_temporal}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=.600]{FIGURES/PLOTS/cases_per_serotype_per_time.pdf}
\end{center}
\caption{
\textbf{FMD cases per serotype in South America through time.}
We show the number of reported FMD cases per serotype.
}
\label{sfig:case_temporal}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\subfigure[]{\includegraphics[scale=.35]{FIGURES/PLOTS/Origins_A_Brazil_2001.pdf}}
\subfigure[]{\includegraphics[scale=.35]{FIGURES/PLOTS/Origins_A_Uruguay_2001.pdf}}\\
\subfigure[]{\includegraphics[scale=.35]{FIGURES/PLOTS/Origins_A_Bolivia_2001.pdf}}
\subfigure[]{\includegraphics[scale=.35]{FIGURES/PLOTS/Origins_A_Colombia_2008.pdf}}\\
\subfigure[]{\includegraphics[scale=.35]{FIGURES/PLOTS/Origins_O_Venezuela_2003.pdf}}
\subfigure[]{\includegraphics[scale=.35]{FIGURES/PLOTS/Origins_O_Peru_2008.pdf}}
\end{center}
\caption{\textbf{Epidemic tracing of FMDV in South America -- extra results}.
For serotype A, we show the most probable origins of the 2001 outbreaks in Brazil (A), Uruguay (B) and Bolivia (C), along with the origins of the Colombian 2008 strain (D).
Panels E and F show the origins of serotype O in Venezuela 2003 and Peru 2008, respectively.
}
\label{sfig:epitrac}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\subfigure[Constant size, empirical dates]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_A_serotype_A.png}}\\
\subfigure[Exponential growth, empirical dates]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_B_serotype_A.png}}\\
\subfigure[Constant size, uniform dates]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_C_serotype_A.png}}\\
\subfigure[Exponential size, uniform dates]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_D_serotype_A.png}}\\
\end{center}
\caption{\textbf{Typical reconstructions in BNPR simulation study, serotype A}.
A: constant population size $N_e = 10$ with empirical dates; B: exponential population growth with $N_0 = 10$ and $r = 0.1$ with empirical dates; C: constant population size $N_e = 10$ with uniform temporal sampling; D: exponential population growth with $N_0 = 10$ and $r = 0.1$ with uniform temporal sampling.
Dashed line shows the true population trajectory, and shaded are shows the 95\% BCI.
Vertical tiles show the four models considered (see text for details).
}
\label{sfig:reconplots_A}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\subfigure[Constant size, empirical date]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_A_serotype_O.png}}\\
\subfigure[Exponential growth, empirical dates]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_B_serotype_O.png}}\\
\subfigure[Constant size, uniform dates]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_C_serotype_O.png}}\\
\subfigure[Exponential size, uniform dates]{\includegraphics[scale=.38]{FIGURES/PLOTS/typical_reconstruction_scenario_D_serotype_O.png}}\\
\end{center}
\caption{\textbf{Typical reconstructions in BNPR simulation study, serotype O}.
A: constant population size $N_e = 10$ with empirical dates; B: exponential population growth with $N_0 = 10$ and $r = 0.1$ with empirical dates; C: constant population size $N_e = 10$ with uniform temporal sampling; D: exponential population growth with $N_0 = 10$ and $r = 0.1$ with uniform temporal sampling.
Dashed line shows the true population trajectory, and shaded are shows the 95\% BCI.
Vertical tiles show the four models considered (see text for details).
}
\label{sfig:reconplots_O}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\subfigure[Constant size, empirical date]{\includegraphics[scale=.3]{FIGURES/PLOTS/BNPR_simulations_scenario_A.pdf}}
\subfigure[Exponential growth, empirical dates]{\includegraphics[scale=.3]{FIGURES/PLOTS/BNPR_simulations_scenario_B.pdf}}\\
\subfigure[Constant size, uniform dates]{\includegraphics[scale=.3]{FIGURES/PLOTS/BNPR_simulations_scenario_C.pdf}}
\subfigure[Exponential size, uniform dates]{\includegraphics[scale=.3]{FIGURES/PLOTS/BNPR_simulations_scenario_D.pdf}}
\end{center}
\caption{\textbf{Estimated (log) marginal likelihoods for the BNPR simulation study}.
A: constant population size $N_e = 10$ with empirical dates; B: exponential population growth with $N_0 = 10$ and $r = 0.1$ with empirical dates; C: constant population size $N_e = 10$ with uniform temporal sampling; D: exponential population growth with $N_0 = 10$ and $r = 0.1$ with uniform temporal sampling.
Points show actual data points and boxplots show the quantiles.
Only results for models 1, 2 and 3 are shown because model 0 is not directly comparable (see text).
}
\label{sfig:BNPR_simu_marglikes}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{figure}[H]
\begin{center}
\subfigure[Serotype A]{\includegraphics[scale=.600]{FIGURES/PLOTS/typical_reconstruction_BNPR_serotype_A.png}} \\
\subfigure[Serotype O]{\includegraphics[scale=.600]{FIGURES/PLOTS/typical_reconstruction_BNPR_serotype_O.png}}
\end{center}
\caption{
\textbf{Population reconstructions for serotypes A and O under different preferential sampling models.}
Reconstructions for serotype A are shown in panel A, while reconstructions for serotype O are in panel B.
}
\label{sfig:full_reconstructions_BNPR}
\end{figure}
\end{center}
% %%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\begin{center}
\begin{longtable}{ccc}
\caption{\textbf{Accession numbers, date and country of collection for the serotype A sequences}. When only the year of collection was known, we used the 15th of July as the collection date.}
\label{stab:sequences_A} \\
\hline \multicolumn{1}{|c|}{\textbf{Accession}} & \multicolumn{1}{c|}{\textbf{Date}} & \multicolumn{1}{c|}{\textbf{Country}} \\ \hline
\endfirsthead
\multicolumn{3}{c}%
{{\bfseries \tablename\ \thetable{} -- continued from previous page}} \\
\hline \multicolumn{1}{|c|}{\textbf{Accession}} & \multicolumn{1}{c|}{\textbf{Date}} & \multicolumn{1}{c|}{\textbf{Country}} \\ \hline
\endhead
\hline \multicolumn{3}{|r|}{{Continued on next page}} \\ \hline
\endfoot
\hline \hline
\endlastfoot
JQ082960 & 1955-07-15 & Brazil \\
AJ306222 & 1955-07-15 & Argentina \\
AJ251476 & 1955-07-15 & Brazil \\
AY593768 & 1955-07-15 & Brazil \\
JQ082955 & 1958-07-15 & Brazil \\
AY593788 & 1958-07-15 & Brazil \\
AY593753 & 1958-07-15 & Brazil \\
JQ082961 & 1959-07-15 & Argentina \\
JQ082956 & 1959-07-15 & Brazil \\
JQ082957 & 1959-07-15 & Brazil \\
AY593769 & 1959-07-15 & Argentina \\
AY593756 & 1959-07-15 & Brazil \\
AY593789 & 1961-07-15 & Argentina \\
JQ082958 & 1962-07-15 & Venezuela \\
JQ082959 & 1962-07-15 & Argentina \\
AY593767 & 1965-07-15 & Argentina \\
JQ082962 & 1966-07-15 & Argentina \\
AY593770 & 1966-07-15 & Argentina \\
JQ082963 & 1967-07-15 & Colombia \\
AY593757 & 1967-07-15 & Brazil \\
AY593771 & 1967-07-15 & Colombia \\
AY593758 & 1967-07-15 & Venezuela \\
AJ308694 & 1968-07-15 & Argentina \\
AY593801 & 1968-07-15 & Uruguay \\
JQ082964 & 1969-07-15 & Peru \\
AY593773 & 1969-07-15 & Peru \\
JQ082965 & 1970-07-15 & Venezuela \\
JQ082966 & 1970-07-15 & Brazil \\
EU553882 & 1970-07-15 & Venezuela \\
AY593775 & 1970-07-15 & Venezuela \\
AJ306220 & 1971-07-15 & Argentina \\
AJ308695 & 1971-07-15 & Argentina \\
JQ082967 & 1975-07-15 & Ecuador \\
JQ082968 & 1975-07-15 & Peru \\
AJ409219 & 1976-07-15 & Argentina \\
EU553851 & 1976-07-15 & Brazil \\
JQ082969 & 1976-07-15 & Brazil \\
JQ082970 & 1976-07-15 & Brazil \\
JQ082971 & 1976-07-15 & Brazil \\
JQ082972 & 1976-07-15 & Colombia \\
APHA76 & 1976-07-15 & Venezuela \\
AY593787 & 1977-07-15 & Brazil \\
JQ082973 & 1979-07-15 & Ecuador \\
APHA79 & 1979-07-15 & Venezuela \\
AY593803 & 1979-07-15 & Brazil \\
KF112899 & 1981-07-15 & Argentina \\
JQ082974 & 1981-07-15 & Brazil \\
AJ306219 & 1981-07-15 & Argentina \\
JQ082975 & 1984-07-15 & Brazil \\
JQ082976 & 1984-07-15 & Colombia \\
JQ082977 & 1985-07-15 & Colombia \\
AY593794 & 1985-07-15 & Colombia \\
AJ306221 & 1987-07-15 & Argentina \\
JQ082978 & 1989-07-15 & Venezuela \\
AJ308698 & 1990-07-15 & Argentina \\
AJ308696 & 1990-07-15 & Argentina \\
AJ308697 & 1990-07-15 & Argentina \\
AJ308699 & 1991-07-15 & Argentina \\
AJ308702 & 1992-07-15 & Argentina \\
AJ308700 & 1992-07-15 & Argentina \\
AJ308701 & 1992-07-15 & Argentina \\
JQ082982 & 1997-07-15 & Brazil \\
JQ082979 & 1997-07-15 & Colombia \\
JQ082980 & 1997-07-15 & Colombia \\
JQ082981 & 1997-07-15 & Colombia \\
JQ082931 & 1999-07-15 & Peru \\
JQ082915 & 2000-05-30 & Bolivia \\
AY593782 & 2000-07-15 & Argentina \\
JQ082930 & 2000-07-15 & Peru \\
JQ082906 & 2000-08-15 & Argentina \\
AM179990 & 2000-08-15 & Argentina \\
AM179989 & 2000-08-15 & Argentina \\
AM179992 & 2000-08-15 & Argentina \\
AM179988 & 2000-08-15 & Argentina \\
AM179991 & 2000-08-15 & Argentina \\
AM179993 & 2000-08-15 & Argentina \\
AM179995 & 2000-09-15 & Argentina \\
AM179996 & 2000-09-15 & Argentina \\
AM179994 & 2000-09-15 & Argentina \\
AM179998 & 2000-10-15 & Argentina \\
AM179997 & 2000-10-15 & Argentina \\
AM179999 & 2000-11-15 & Argentina \\
JQ082937 & 2000-12-09 & Venezuela \\
KX002194 & 2000-12-31 & Argentina \\
KX002195 & 2001-02-10 & Argentina \\
KX002196 & 2001-02-18 & Argentina \\
KX002204 & 2001-03-07 & Argentina \\
KX002203 & 2001-03-13 & Argentina \\
JQ082907 & 2001-03-15 & Argentina \\
JQ082908 & 2001-03-15 & Argentina \\
JQ082909 & 2001-03-15 & Argentina \\
AM180007 & 2001-03-15 & Argentina \\
AM180000 & 2001-03-15 & Argentina \\
AM180005 & 2001-03-15 & Argentina \\
AM180008 & 2001-03-15 & Argentina \\
AM180002 & 2001-03-15 & Argentina \\
AM180006 & 2001-03-15 & Argentina \\
AM180001 & 2001-03-15 & Argentina \\
AM180003 & 2001-03-15 & Argentina \\
AM180004 & 2001-03-15 & Argentina \\
KX002178 & 2001-03-21 & Argentina \\
KX002205 & 2001-03-27 & Argentina \\
KX002193 & 2001-03-29 & Argentina \\
AM180009 & 2001-04-15 & Argentina \\
AM180014 & 2001-04-15 & Argentina \\
AM180010 & 2001-04-15 & Argentina \\
AM180012 & 2001-04-15 & Argentina \\
AM180013 & 2001-04-15 & Argentina \\
AM180015 & 2001-04-15 & Argentina \\
AM180011 & 2001-04-15 & Argentina \\
AM180016 & 2001-04-15 & Argentina \\
JQ082910 & 2001-04-15 & Uruguay \\
JQ082911 & 2001-04-15 & Uruguay \\
KX002198 & 2001-04-20 & Argentina \\
JQ082916 & 2001-05-07 & Bolivia \\
JQ082917 & 2001-05-10 & Bolivia \\
KX002200 & 2001-05-12 & Argentina \\
KX002201 & 2001-05-15 & Argentina \\
KX002202 & 2001-05-15 & Argentina \\
AM180019 & 2001-05-15 & Argentina \\
AM180017 & 2001-05-15 & Argentina \\
AM180018 & 2001-05-15 & Argentina \\
JQ082912 & 2001-05-15 & Brazil \\
JQ082913 & 2001-05-15 & Brazil \\
JQ082914 & 2001-05-15 & Brazil \\
KX002176 & 2001-05-25 & Argentina \\
KX002177 & 2001-05-28 & Argentina \\
KX002180 & 2001-06-03 & Argentina \\
JQ082918 & 2001-06-07 & Bolivia \\
JQ082932 & 2001-06-13 & Venezuela \\
AM180020 & 2001-06-15 & Argentina \\
AM180021 & 2001-06-15 & Argentina \\
KX002181 & 2001-06-16 & Argentina \\
KX002182 & 2001-06-17 & Argentina \\
KX002183 & 2001-06-17 & Argentina \\
KX002184 & 2001-07-10 & Argentina \\
AY593802 & 2001-07-15 & Uruguay \\
AY593783 & 2001-07-15 & Argentina \\
AY593784 & 2001-07-15 & Argentina \\
AY593785 & 2001-07-15 & Argentina \\
AY593786 & 2001-07-15 & Argentina \\
AY593790 & 2001-07-15 & Argentina \\
KX002186 & 2001-07-20 & Argentina \\
JQ082919 & 2001-07-23 & Bolivia \\
KX002185 & 2001-08-07 & Argentina \\
JQ082920 & 2001-08-07 & Bolivia \\
KX002189 & 2001-08-08 & Argentina \\
KX002188 & 2001-08-15 & Argentina \\
KX002187 & 2001-08-21 & Argentina \\
KX002191 & 2001-10-11 & Argentina \\
AM180022 & 2001-10-15 & Argentina \\
KX002192 & 2001-11-15 & Argentina \\
JQ082933 & 2001-12-15 & Venezuela \\
AM180024 & 2002-01-15 & Argentina \\
JQ082921 & 2002-03-30 & Bolivia \\
JQ082929 & 2002-06-15 & Ecuador \\
JQ082934 & 2002-11-28 & Venezuela \\
JQ082935 & 2003-05-14 & Venezuela \\
JQ082936 & 2003-07-03 & Venezuela \\
JQ082938 & 2003-12-12 & Venezuela \\
JQ082939 & 2004-01-23 & Venezuela \\
JQ082940 & 2004-02-11 & Venezuela \\
JQ082941 & 2004-03-10 & Venezuela \\
JQ082942 & 2004-04-01 & Venezuela \\
JQ082943 & 2004-05-19 & Venezuela \\
JQ082944 & 2004-07-12 & Venezuela \\
JQ082922 & 2004-07-15 & Colombia \\
JQ082945 & 2004-08-13 & Venezuela \\
JQ082946 & 2004-08-26 & Venezuela \\
JQ082947 & 2004-09-24 & Venezuela \\
JQ082948 & 2004-11-18 & Venezuela \\
JQ082949 & 2005-02-03 & Venezuela \\
JQ082950 & 2005-04-06 & Venezuela \\
JQ082951 & 2005-04-20 & Venezuela \\
JQ082952 & 2005-04-29 & Venezuela \\
JQ082953 & 2006-06-13 & Venezuela \\
JQ082954 & 2007-01-30 & Venezuela \\
JQ082923 & 2008-06-06 & Colombia \\
JQ082924 & 2008-06-06 & Colombia \\
JQ082925 & 2008-06-06 & Colombia \\
JQ082926 & 2008-06-06 & Colombia \\
JQ082927 & 2008-06-06 & Colombia \\
JQ082928 & 2008-06-06 & Colombia \\
KU234721 & 2013-04-01 & Venezuela
\end{longtable}
\end{center}
\begin{center}
\begin{longtable}{ccc}
\caption{\textbf{Acession numbers, date and country of collection for the serotype O sequences}. When only the year of collection was known, we used the 15th of July as the collection date.}
\label{stab:sequences_O} \\
\hline \multicolumn{1}{|c|}{\textbf{Accession}} & \multicolumn{1}{c|}{\textbf{Date}} & \multicolumn{1}{c|}{\textbf{Country}} \\ \hline
\endfirsthead
\multicolumn{3}{c}%
{{\bfseries \tablename\ \thetable{} -- continued from previous page}} \\
\hline \multicolumn{1}{|c|}{\textbf{Acession}} & \multicolumn{1}{c|}{\textbf{Date}} & \multicolumn{1}{c|}{\textbf{Country}} \\ \hline
\endhead
\hline \multicolumn{3}{|r|}{{Continued on next page}} \\ \hline
\endfoot
\hline \hline
\endlastfoot
APHVP1OC & 1971-07-15 & Brazil \\
AY593827 & 1971-07-15 & Venezuela \\
AJ308705 & 1977-07-15 & Argentina \\
DQ789075 & 1983-07-15 & Argentina \\
AJ308706 & 1983-07-15 & Argentina \\
KJ831663 & 1990-07-15 & Bolivia \\
AJ308707 & 1990-07-15 & Argentina \\
KJ831741 & 1992-07-15 & Brazil \\
AJ308708 & 1992-07-15 & Argentina \\
KJ831730 & 1993-07-15 & Peru \\
KJ831731 & 1993-07-15 & Peru \\
AJ292205 & 1993-07-15 & Argentina \\
AJ292207 & 1993-07-15 & Argentina \\
AJ292208 & 1993-07-15 & Argentina \\
AJ292209 & 1993-07-15 & Argentina \\
KJ831736 & 1994-07-15 & Brazil \\
KJ831742 & 1994-07-15 & Brazil \\
KJ831743 & 1994-07-15 & Brazil \\
KJ831744 & 1994-07-15 & Brazil \\
KJ831745 & 1994-07-15 & Brazil \\
KJ831746 & 1994-07-15 & Brazil \\
KJ831747 & 1994-07-15 & Brazil \\
HQ695747 & 1994-07-15 & Colombia \\
HQ695748 & 1994-07-15 & Colombia \\
HQ695749 & 1994-07-15 & Colombia \\
HQ695750 & 1994-07-15 & Colombia \\
HQ695751 & 1994-07-15 & Colombia \\
HQ695752 & 1994-07-15 & Colombia \\
HQ695753 & 1994-07-15 & Colombia \\
HQ695754 & 1994-07-15 & Colombia \\
HQ695755 & 1994-07-15 & Colombia \\
HQ695756 & 1994-07-15 & Colombia \\
HQ695757 & 1994-07-15 & Colombia \\
HQ695758 & 1994-07-15 & Colombia \\
HQ695759 & 1994-07-15 & Colombia \\
HQ695760 & 1994-07-15 & Colombia \\
HQ695761 & 1994-07-15 & Colombia \\
HQ695762 & 1994-07-15 & Colombia \\
KJ831672 & 1994-07-15 & Ecuador \\
KJ831673 & 1994-07-15 & Ecuador \\
KJ831732 & 1994-07-15 & Peru \\
KJ831733 & 1994-07-15 & Peru \\
KJ831734 & 1994-07-15 & Peru \\
AJ292206 & 1994-07-15 & Argentina \\
AJ306212 & 1994-07-15 & Argentina \\
KJ831748 & 1995-07-15 & Brazil \\
HQ695763 & 1995-07-15 & Colombia \\
HQ695764 & 1995-07-15 & Colombia \\
HQ695765 & 1995-07-15 & Colombia \\
HQ695766 & 1995-07-15 & Colombia \\
HQ695767 & 1995-07-15 & Colombia \\
HQ695768 & 1995-07-15 & Colombia \\
HQ695769 & 1995-07-15 & Colombia \\
HQ695770 & 1998-07-15 & Colombia \\
HQ695771 & 1998-07-15 & Colombia \\
HQ695772 & 1998-07-15 & Colombia \\
HQ695773 & 1998-07-15 & Colombia \\
DQ834704 & 1998-07-15 & Brazil \\
HQ695774 & 1999-07-15 & Colombia \\
HQ695737 & 2000-03-20 & Bolivia \\
HQ695744 & 2000-05-07 & Bolivia \\
HQ695806 & 2000-07-09 & Ecuador \\
KJ831738 & 2000-07-15 & Argentina \\
KJ831739 & 2000-07-15 & Argentina \\
HQ695775 & 2000-07-15 & Colombia \\
HQ695776 & 2000-07-15 & Colombia \\
HQ695777 & 2000-07-15 & Colombia \\
HQ695778 & 2000-07-15 & Colombia \\
HQ695779 & 2000-07-15 & Colombia \\
AM180025 & 2000-07-15 & Argentina \\
DQ834708 & 2000-07-15 & Bolivia \\
DQ834706 & 2000-07-15 & Brazil \\
DQ834705 & 2000-07-15 & Argentina \\
DQ834707 & 2000-07-15 & Uruguay \\
AM180026 & 2000-08-15 & Argentina \\
AM180027 & 2000-09-15 & Argentina \\
AM180028 & 2000-09-15 & Argentina \\
AM180029 & 2000-10-15 & Argentina \\
HQ695738 & 2000-11-16 & Bolivia \\
AM180030 & 2000-12-15 & Argentina \\
HQ695739 & 2001-02-19 & Bolivia \\
HQ695740 & 2001-05-05 & Bolivia \\
JN005916 & 2001-06-08 & Ecuador \\
HQ695741 & 2001-07-01 & Bolivia \\
DQ834709 & 2001-07-15 & Bolivia \\
HQ695742 & 2002-04-07 & Bolivia \\
HQ695743 & 2002-04-12 & Bolivia \\
HQ695783 & 2002-06-15 & Ecuador \\
HQ695784 & 2002-06-15 & Ecuador \\
HQ695785 & 2002-06-15 & Ecuador \\
HQ695780 & 2002-07-15 & Colombia \\
KJ831728 & 2002-07-15 & Paraguay \\
KJ831729 & 2002-07-15 & Paraguay \\
DQ834710 & 2002-07-15 & Paraguay \\
HQ695792 & 2003-01-12 & Ecuador \\
HQ695786 & 2003-01-27 & Ecuador \\
HQ695793 & 2003-02-12 & Ecuador \\
HQ695787 & 2003-06-02 & Ecuador \\
HQ695790 & 2003-06-11 & Ecuador \\
HQ695745 & 2003-07-13 & Bolivia \\
DQ834712 & 2003-07-15 & Bolivia \\
DQ834713 & 2003-07-15 & Bolivia \\
DQ834711 & 2003-07-15 & Paraguay \\
HQ695788 & 2003-07-30 & Ecuador \\
HQ695794 & 2003-08-12 & Ecuador \\
HQ695845 & 2003-09-01 & Venezuela \\
HQ695789 & 2003-09-24 & Ecuador \\
HQ695791 & 2003-11-20 & Ecuador \\
HQ695795 & 2004-01-27 & Ecuador \\
HQ695846 & 2004-05-03 & Venezuela \\
HQ695796 & 2004-06-22 & Ecuador \\
HQ695797 & 2004-06-24 & Ecuador \\
HQ695798 & 2004-06-30 & Ecuador \\
HQ695801 & 2004-07-01 & Ecuador \\
HQ695800 & 2004-07-02 & Ecuador \\
HQ695799 & 2004-07-03 & Ecuador \\
HQ695802 & 2004-07-04 & Ecuador \\
HQ695803 & 2004-07-05 & Ecuador \\
HQ695804 & 2004-07-07 & Ecuador \\
HQ695805 & 2004-07-07 & Ecuador \\
HQ695807 & 2004-07-13 & Ecuador \\
HQ695810 & 2004-07-15 & Ecuador \\
HQ695808 & 2004-07-16 & Ecuador \\
HQ695809 & 2004-07-20 & Ecuador \\
HQ695811 & 2004-07-25 & Ecuador \\
HQ695812 & 2004-07-26 & Ecuador \\
HQ695813 & 2004-07-31 & Ecuador \\
HQ695814 & 2004-09-16 & Ecuador \\
HQ695815 & 2004-09-17 & Ecuador \\
HQ695816 & 2004-09-20 & Ecuador \\
HQ695817 & 2004-10-14 & Ecuador \\
HQ695818 & 2005-01-05 & Ecuador \\
HQ695819 & 2005-03-23 & Ecuador \\
HQ695820 & 2005-04-01 & Ecuador \\
HQ695823 & 2005-04-15 & Ecuador \\
HQ695821 & 2005-04-21 & Ecuador \\
HQ695822 & 2005-04-24 & Ecuador \\
HQ695847 & 2005-05-12 & Venezuela \\
HQ695825 & 2005-05-15 & Ecuador \\
HQ695824 & 2005-05-19 & Ecuador \\
HQ695826 & 2005-05-25 & Ecuador \\
HQ695848 & 2005-06-10 & Ecuador \\
HQ695827 & 2005-06-11 & Ecuador \\
HQ695828 & 2005-06-19 & Ecuador \\
HQ695830 & 2005-06-21 & Ecuador \\
HQ695831 & 2005-06-22 & Ecuador \\
HQ695832 & 2005-06-23 & Ecuador \\
HQ695833 & 2005-06-29 & Ecuador \\
HQ695834 & 2005-07-14 & Ecuador \\
HQ695835 & 2005-07-15 & Ecuador \\
DQ834714 & 2005-07-15 & Brazil \\
DQ834715 & 2005-07-15 & Brazil \\
DQ834716 & 2005-07-15 & Brazil \\
DQ834717 & 2005-07-15 & Brazil \\
DQ834718 & 2005-07-15 & Brazil \\
DQ834719 & 2005-07-15 & Brazil \\
DQ834720 & 2005-07-15 & Brazil \\
DQ834721 & 2005-07-15 & Brazil \\
DQ834722 & 2005-07-15 & Brazil \\
DQ834723 & 2005-07-15 & Brazil \\
DQ834724 & 2005-07-15 & Brazil \\
DQ834725 & 2005-07-15 & Brazil \\
DQ834726 & 2005-07-15 & Brazil \\
HQ695829 & 2005-08-23 & Ecuador \\
HQ695836 & 2005-08-23 & Ecuador \\
HQ695837 & 2006-03-06 & Ecuador \\
HQ695838 & 2006-03-06 & Ecuador \\
DQ834727 & 2006-07-15 & Argentina \\
HQ695849 & 2006-11-21 & Venezuela \\
HQ695839 & 2006-11-24 & Ecuador \\
HQ695746 & 2007-01-23 & Bolivia \\
HQ695850 & 2007-03-19 & Venezuela \\
HQ695840 & 2007-04-30 & Ecuador \\
HQ695841 & 2007-07-15 & Ecuador \\
HQ695781 & 2008-04-01 & Colombia \\
HQ695782 & 2008-04-01 & Colombia \\
HQ695842 & 2008-05-16 & Ecuador \\
HQ695843 & 2008-05-31 & Ecuador \\
HQ695844 & 2008-06-18 & Peru \\
JN005890 & 2009-03-04 & Ecuador \\
JN005891 & 2009-04-27 & Ecuador \\
JN005894 & 2009-06-04 & Ecuador \\
JN005895 & 2009-06-05 & Ecuador \\
JN005899 & 2009-06-05 & Ecuador \\
JN005896 & 2009-06-06 & Ecuador \\
JN005897 & 2009-06-06 & Ecuador \\
JN005898 & 2009-06-09 & Ecuador \\
JN005900 & 2009-06-10 & Ecuador \\
JN005901 & 2009-06-15 & Ecuador \\
JN005902 & 2009-06-18 & Ecuador \\
JN005893 & 2009-06-24 & Ecuador \\
JN005892 & 2009-06-25 & Ecuador \\
JN005903 & 2009-06-26 & Ecuador \\
JN005904 & 2009-06-26 & Ecuador \\
JN005905 & 2009-06-30 & Ecuador \\
JN005906 & 2009-07-06 & Ecuador \\
JN005907 & 2009-07-14 & Ecuador \\
JN005908 & 2009-07-31 & Ecuador \\
JN005909 & 2010-03-27 & Ecuador \\
JN005910 & 2010-04-29 & Ecuador \\
JN005911 & 2010-05-27 & Ecuador \\
JN005912 & 2010-05-30 & Ecuador \\
JN005913 & 2010-05-31 & Ecuador \\
JN005917 & 2010-06-01 & Ecuador \\
JN005914 & 2010-06-03 & Ecuador \\
JN005915 & 2010-06-03 & Ecuador \\
KX353623 & 2010-06-16 & Ecuador \\
JN005918 & 2010-06-17 & Ecuador \\
KC519630 & 2010-07-15 & Ecuador \\
JX514427 & 2011-09-15 & Paraguay
\end{longtable}
\end{center}
\end{document}