-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgridSearch.py
367 lines (312 loc) · 15.2 KB
/
gridSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from torch import nn, optim
from CONRADataset import CONRADataset
from models.convNet import simpleConvNet
from models.unet import UNet
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch
from torchvision import transforms
import numpy as np
from skimage.measure import compare_ssim as ssim
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
from tqdm import tqdm
from tensorboard import program
import os
import argparse
# helper function
def calculate_loss(set, loss_fn, length_set, dev, model):
'''
calculates the mean loss per sample
:param set: a dataloader containing a set of length_set samples
:param loss_fn: the function which shall be used to accumulate loss
:param length_set: number of samples in set
:param dev: device to use for calculation ('cpu' or 'cuda:0')
:param model: model to evaluate
:return: loss per sample as an float
'''
l = 0
with torch.no_grad():
for x, y in tqdm(set):
x, y = x.to(device=dev, dtype=torch.float), y.to(device=dev, dtype=torch.float)
pred = model(x)
l += float(loss_fn(pred, y).item())
return l/length_set
def performance(set, dev, model, bs):
iodSSIM = 0
waterSSIM = 0
iodR = 0
waterR = 0
with torch.no_grad():
for x, y in set:
x, y = x.to(device=dev, dtype=torch.float), y.to(device=dev, dtype=torch.float)
# shape is (bs, 2, 480, 620)
pred = model(x)
# loop over samples in batch
for p in range(pred.shape[0]):
iodine = pred[p, 0, :, :].cpu().numpy()
water = pred[p, 1, :, :].cpu().numpy()
gti = y[p, 0, :, :].cpu().numpy()
gtw = y[p, 1, :, :].cpu().numpy()
assert len(gti.shape) == 2
# norming iodine data range as its below one and results in np.nan
maxIod = iodine.max()
if not np.all(np.isfinite(water.flatten())) or not np.all(np.isfinite(iodine.flatten())) \
or np.all(iodine == iodine[0]) or np.all(water == water[0]):
print("---------- nan, inf or constant array occurred -----------")
continue
if maxIod != 0:
iodFlatNormed = (iodine.flatten()/maxIod)*100
gtiodFlatNormed = (gti.flatten()/maxIod)*100
iodR += pearsonr(iodFlatNormed, gtiodFlatNormed)[0] / 200
iodSSIM += ssim(iodine, gti) / 200
waterR += pearsonr(water.flatten(), gtw.flatten())[0] / 200
waterSSIM += ssim(water, gtw) / 200
return [iodSSIM, waterSSIM], [iodR, waterR]
# main algorithm configured by argparser. see main method of this file.
def evaluate_performance(args, gridargs, logger):
'''
-------------------------Hyperparameters--------------------------
'''
EPOCHS = args.epochs
ITER = args.iterations # per epoch
LR = gridargs['lr']
MOM = gridargs['mom']
# LOGInterval = args.log_interval
BATCHSIZE = args.batch_size
NUMBER_OF_WORKERS = args.workers
DATA_FOLDER = args.data
ROOT = gridargs['run']
CUSTOM_LOG_DIR = os.path.join(ROOT, "additionalLOGS")
# check existance of data
if not os.path.isdir(DATA_FOLDER):
print("data folder not existant or in wrong layout.\n\t", DATA_FOLDER)
exit(0)
'''
---------------------------preparations---------------------------
'''
# CUDA for PyTorch
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
print("using device: ", str(device))
'''
---------------------------loading dataset and normalizing---------------------------
'''
# Dataloader Parameters
train_params = {'batch_size': BATCHSIZE,
'shuffle': True,
'num_workers': NUMBER_OF_WORKERS}
test_params = {'batch_size': BATCHSIZE,
'shuffle': False,
'num_workers': NUMBER_OF_WORKERS}
# create a folder for the weights and custom logs
if not os.path.isdir(CUSTOM_LOG_DIR):
os.makedirs(CUSTOM_LOG_DIR)
traindata = CONRADataset(DATA_FOLDER,
True,
device=device,
precompute=True,
transform=None)
testdata = CONRADataset(DATA_FOLDER,
False,
device=device,
precompute=True,
transform=None)
trainingset = DataLoader(traindata, **train_params)
testset = DataLoader(testdata, **test_params)
if args.model == "unet":
m = UNet(2, 2).to(device)
else:
m = simpleConvNet(2, 2).to(device)
o = optim.SGD(m.parameters(),
lr=LR,
momentum=MOM)
loss_fn = nn.MSELoss()
test_loss = None
train_loss = None
'''
-----------------------------training-----------------------------
'''
global_step = 0
# calculating initial loss
if test_loss is None or train_loss is None:
print("calculating initial loss")
m.eval()
print("testset...")
test_loss = calculate_loss(set=testset, loss_fn=loss_fn, length_set=len(testdata), dev=device, model=m)
print("trainset...")
train_loss = calculate_loss(set=trainingset, loss_fn=loss_fn, length_set=len(traindata), dev=device, model=m)
# printing runtime information
print("starting training at {} for {} epochs {} iterations each\n\t{} total".format(0, EPOCHS, ITER, EPOCHS * ITER))
print("\tbatchsize: {}\n\tloss: {}\n".format(BATCHSIZE, train_loss))
print("\tmodel: {}\n\tlearningrate: {}\n\tmomentum: {}\n\tnorming output space: {}".format(args.model, LR, MOM, False))
#start actual training loops
for e in range(0, EPOCHS):
# iterations will not be interupted with validation and metrics
for i in range(ITER):
global_step = (e * ITER) + i
# training
m.train()
iteration_loss = 0
for x, y in tqdm(trainingset):
x, y = x.to(device=device, dtype=torch.float), y.to(device=device, dtype=torch.float)
pred = m(x)
loss = loss_fn(pred, y)
iteration_loss += loss.item()
o.zero_grad()
loss.backward()
o.step()
print("\niteration {}: --accumulated loss {}".format(global_step, iteration_loss))
if not np.isfinite(iteration_loss):
print("EXPLODING OR VANISHING GRADIENT at lr: {} mom: {} step: {}".format(LR, MOM, global_step))
return
# validation, saving and logging
print("\nvalidating")
m.eval() # disable dropout batchnorm etc
print("testset...")
test_loss = calculate_loss(set=testset, loss_fn=loss_fn, length_set=len(testdata), dev=device, model=m)
print("trainset...")
train_loss = calculate_loss(set=trainingset, loss_fn=loss_fn, length_set=len(traindata), dev=device, model=m)
print("calculating performace...")
currSSIM, currR = performance(set=testset, dev=device, model=m, bs=BATCHSIZE)
print("SSIM (iod/water): {}/{}\nR (iod/water): {}/{}".format(currSSIM[0], currSSIM[1], currR[0], currR[1]))
#f.write("num, lr, mom, step, ssimIOD, ssimWAT, rIOD, rWAT, trainLOSS, testLOSS\n")
with open(gridargs['stats'], 'a') as f:
newCSVline = "{}, {}, {}, {}, {}, {}, {}, {}, {}, {}\n".format(gridargs['runnum'], LR,
MOM, global_step,
currSSIM[0], currSSIM[1],
currR[0], currR[1],
train_loss, test_loss)
f.write(newCSVline)
print("wrote new line to csv:\n\t{}".format(newCSVline))
print("advanced metrics")
with torch.no_grad():
for x, y in testset:
# x, y in shape[2,2,480,620] [b,c,h,w]
x, y = x.to(device=device, dtype=torch.float), y.to(device=device, dtype=torch.float)
pred = m(x)
iod = pred.cpu().numpy()[0, 0, :, :]
water = pred.cpu().numpy()[0, 1, :, :]
gtiod = y.cpu().numpy()[0, 0, :, :]
gtwater = y.cpu().numpy()[0, 1, :, :]
IMAGE_LOG_DIR = os.path.join(CUSTOM_LOG_DIR, str(global_step))
if not os.path.isdir(IMAGE_LOG_DIR):
os.makedirs(IMAGE_LOG_DIR)
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'iod' + str(global_step) + '.png'), iod, cmap='gray')
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'water' + str(global_step) + '.png'), water, cmap='gray')
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'gtiod' + str(global_step) + '.png'), gtiod, cmap='gray')
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'gtwater' + str(global_step) + '.png'), gtwater, cmap='gray')
print("creating and saving profile plot at 240")
fig2, (ax1, ax2) = plt.subplots(nrows=2,
ncols=1) # plot water and iodine in one plot
ax1.plot(iod[240])
ax1.plot(gtiod[240])
ax1.title.set_text("iodine horizontal profile")
ax1.set_ylabel("mm iodine")
ax1.set_ylim([np.min(gtiod), np.max(gtiod)])
print("max value in gtiod is {}".format(np.max(gtiod)))
ax2.plot(water[240])
ax2.plot(gtwater[240])
ax2.title.set_text("water horizontal profile")
ax2.set_ylabel("mm water")
ax2.set_ylim([np.min(gtwater), np.max(gtwater)])
plt.subplots_adjust(wspace=0.3)
plt.savefig(os.path.join(IMAGE_LOG_DIR, 'ProfilePlots' + str(global_step) + '.png'))
break
if logger is not None and train_loss is not None:
logger.add_scalar('test_loss', test_loss, global_step=global_step)
logger.add_scalar('train_loss', train_loss, global_step=global_step)
logger.add_image("iodine-prediction", iod.reshape(1, 480, 620), global_step=global_step)
logger.add_image("ground-truth", gtiod.reshape(1, 480, 620), global_step=global_step)
# logger.add_image("water-prediction", wat)
print("\ttensorboard updated with test/train loss and a sample image")
# saving final results
CHECKPOINT = os.path.join(ROOT, "finalWeights.pt")
print("saving upon exit")
torch.save({
'epoch': EPOCHS,
'iterations': ITER,
'model_state_dict': m.state_dict(),
'optimizer_state_dict': o.state_dict(),
'train_loss': train_loss,
'test_loss': test_loss},
CHECKPOINT)
print('\tsaved progress to: ', CHECKPOINT)
if logger is not None and train_loss is not None:
logger.add_scalar('test_loss', test_loss, global_step=global_step)
logger.add_scalar('train_loss', train_loss, global_step=global_step)
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='DeepMaterial model training')
parser.add_argument('--data', '-d', required=True,
help='folder containing test and training sets of MNIST')
parser.add_argument('--run', '-r', required=True,
help='target folder which will hold model weights and logs')
parser.add_argument('--model', '-m', default='unet',
help='model to use. options are: [<unet>], <conv>')
parser.add_argument('--batch-size', type=int, default=2, metavar='N',
help='input batch size for training (default: 2)')
parser.add_argument('--workers', type=int, default=10, metavar='N',
help='parallel data loading processes (default: 5)')
parser.add_argument('--epochs', type=int, default=1, metavar='N',
help='number of epochs to train (default: 5)')
parser.add_argument('--iterations', type=int, default=1, metavar='N',
help='training cycles per epoch (before validation) (default: 1)')
parser.add_argument('--lrfrom', type=float, default=1e-3, metavar='LR',
help='learning rate (default: 0.000001)')
parser.add_argument('--lrto', type=float, default=1e-6, metavar='LR',
help='learning rate (default: 0.000001)')
parser.add_argument('--momfrom', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--momto', type=float, default=1.1, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--steps', type=int, default=5,
help='steps in lr and mom direction')
# reproducabilty
torch.manual_seed(1220)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(0)
# general runtime args
args = parser.parse_args()
# additional args needed for gridsearch
gridargs = {}
# logfile to later contain all runtime infos of all runs
stats = os.path.join(args.run, "stats.csv")
gridargs['stats'] = stats
# folder to save all individial logs of all runs t0
runs = os.path.join(args.run, "runs")
if not os.path.isdir(args.run):
os.makedirs(args.run)
if not os.path.isdir(runs):
os.makedirs(runs)
if not os.path.isfile(stats):
with open(stats, 'w+') as f:
f.write("num, lr, mom, step, ssimIOD, ssimWAT, rIOD, rWAT, trainLOSS, testLOSS\n")
# space to perform gridsearch over
lrrange = np.linspace(args.lrfrom, args.lrto, args.steps)
momrange = np.linspace(args.momfrom, args.momto, args.steps)
print("learningrate range: {}\nmomentum range: {}".format(lrrange, momrange))
print("---------------------- starting hyperparamer optimization ----------------------")
logger = None
try:
for i, lr in enumerate(lrrange):
for j, mom in enumerate(momrange):
rundir = os.path.join(runs, "lr{}mom{}".format(i, j))
if not os.path.isdir(rundir):
os.makedirs(rundir)
## start training with right args object
gridargs['runnum'] = (i * args.steps) + j
gridargs['run'] = rundir
gridargs['lr'] = lr
gridargs['mom'] = mom
print("starting run number: {}\n\tlr: {}\n\tmom: {}".format(gridargs['runnum'], gridargs['lr'], gridargs['mom']))
logger = SummaryWriter(log_dir=rundir)
print("tensorboard logs are written to ", rundir)
evaluate_performance(args, gridargs, logger)
## end training
logger.close()
except (KeyboardInterrupt, SystemExit):
print("exiting safely because of Keyboard Interrupt or SystemExit")
if logger is not None:
logger.close()