-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
496 lines (439 loc) · 20.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from skimage.measure import compare_ssim as ssim
from scipy.stats import pearsonr
from CONRADataset import CONRADataset
from models.convNet import simpleConvNet
from models.unet import UNet
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch
from torchvision import transforms
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import os
import argparse
if 'faui' in os.uname()[1]:
from tensorboard import program
# helper function
def calculate_loss(set, loss_fn, length_set, dev, model):
'''
calculates the mean loss per sample
:param set: a dataloader containing a set of length_set samples
:param loss_fn: the function which shall be used to accumulate loss
:param length_set: number of samples in set
:param dev: device to use for calculation ('cpu' or 'cuda:0')
:param model: model to evaluate
:return: loss per sample as an float
'''
l = 0
with torch.no_grad():
for x, y in tqdm(set):
x, y = x.to(device=dev, dtype=torch.float), y.to(device=dev, dtype=torch.float)
pred = model(x)
l += float(loss_fn(pred, y).item())
return l/length_set
def count_trainables(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def computeMeanStdOverDataset(datasettype, DATAFOLDER, load_params, device, transform=None):
# NORMLABEL
if datasettype == 'CONRADataset':
# computing mean and std over trainingset
ds = CONRADataset(DATAFOLDER,
True,
device=device,
precompute=True,
transform=transform)
trainingset = DataLoader(ds, **load_params)
# sticking to convention iod -> 0, water -> 1
m = np.zeros(2)
s = np.zeros(2)
counter = 0
# iterating and summing all mean and std
for _, y in tqdm(trainingset):
# y in shape [b, c, y, x]
y = y.to(device=device, dtype=torch.float)
iod = y[:, 0, :, :]
water = y[:, 1, :, :]
m[0] += torch.mean(iod)
m[1] += torch.mean(water)
s[0] += torch.std(iod)
s[1] += torch.std(water)
counter += 1
return m/counter, s/counter
print("[train.py/computeMeanStd: dataset not recognized")
exit(1)
def performance(set, dev, model, bs):
iodSSIM = 0
waterSSIM = 0
iodR = 0
waterR = 0
with torch.no_grad():
for x, y in set:
x, y = x.to(device=dev, dtype=torch.float), y.to(device=dev, dtype=torch.float)
# shape is (bs, 2, 480, 620)
pred = model(x)
# loop over samples in batch
for p in range(bs):
iodine = pred[p, 0, :, :].cpu().numpy()
water = pred[p, 1, :, :].cpu().numpy()
gti = y[p, 0, :, :].cpu().numpy()
gtw = y[p, 1, :, :].cpu().numpy()
assert len(gti.shape) == 2
# norming iodine data range as its below one and results in np.nan
maxIod = iodine.max()
iodFlatNormed = (iodine.flatten()/maxIod)*100
gtiodFlatNormed = (gti.flatten()/maxIod)*100
iodR += pearsonr(iodFlatNormed, gtiodFlatNormed)[0] / 200
iodSSIM += ssim(iodine, gti) / 200
waterR += pearsonr(iodFlatNormed, gtiodFlatNormed)[0] / 200
waterSSIM += ssim(water, gtw) / 200
return [iodSSIM, waterSSIM], [iodR, waterR]
def advanvedMetrics(groundTruth, pred, mean, std, global_step, norm, IMAGE_LOG_DIR):
'''
logging advanced metrics in IMAGE_LOG_DIR
in case of stddev normalization mean will be [0, 0]
'''
iod = pred[0]
water = pred[1]
gtiod = groundTruth[0]
gtwater = groundTruth[1]
if norm:
# NORMLABEL
print('denormalizing images')
iod = (iod * std[0]) + mean[0]
water = (water * std[1]) + mean[1]
gtiod = (gtiod * std[0]) + mean[0]
gtwater = (gtwater * std[1]) + mean[1]
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'iod' + str(global_step) + '.png'), iod, cmap='gray')
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'water' + str(global_step) + '.png'), water, cmap='gray')
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'gtiod' + str(global_step) + '.png'), gtiod, cmap='gray')
plt.imsave(os.path.join(IMAGE_LOG_DIR, 'gtwater' + str(global_step) + '.png'), gtwater, cmap='gray')
print("creating and saving profile plot at 240")
fig2, (ax1, ax2) = plt.subplots(nrows=2,
ncols=1) # plot water and iodine in one plot
ax1.plot(iod[240])
ax1.plot(gtiod[240])
ax1.title.set_text("iodine horizontal profile")
ax1.set_ylabel("mm iodine")
ax1.set_ylim([np.min(gtiod), np.max(gtiod)])
print("max value in gtiod is {}".format(np.max(gtiod)))
ax2.plot(water[240])
ax2.plot(gtwater[240])
ax2.title.set_text("water horizontal profile")
ax2.set_ylabel("mm water")
ax2.set_ylim([np.min(gtwater), np.max(gtwater)])
plt.subplots_adjust(hspace=0.3)
plt.savefig(os.path.join(IMAGE_LOG_DIR, 'ProfilePlots' + str(global_step) + '.png'))
print("saved truth and prediction in shape " + str(iod.shape))
# main algorithm configured by argparser. see main method of this file.
def train(args):
'''
-------------------------Hyperparameters--------------------------
'''
EPOCHS = args.epochs
START = 0 # could enter a checkpoint start epoch
ITER = args.iterations # per epoch
LR = args.lr
MOM = args.momentum
# LOGInterval = args.log_interval
BATCHSIZE = args.batch_size
TEST_BATCHSIZE = args.test_batch_size
NUMBER_OF_WORKERS = args.workers
DATA_FOLDER = args.data
TESTSET_FOLDER = args.testset
ROOT = args.run
WEIGHT_DIR = os.path.join(ROOT, "weights")
CUSTOM_LOG_DIR = os.path.join(ROOT, "additionalLOGS")
CHECKPOINT = os.path.join(WEIGHT_DIR, str(args.model) + str(args.name) + ".pt")
useTensorboard = args.tb
# check existance of data
if not os.path.isdir(DATA_FOLDER):
print("data folder not existant or in wrong layout.\n\t", DATA_FOLDER)
exit(0)
# check existance of testset
if TESTSET_FOLDER is not None and not os.path.isdir(TESTSET_FOLDER):
print("testset folder not existant or in wrong layout.\n\t", DATA_FOLDER)
exit(0)
'''
---------------------------preparations---------------------------
'''
# CUDA for PyTorch
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
print("using device: ", str(device))
# loading the validation samples to make online evaluations
path_to_valX = args.valX
path_to_valY = args.valY
valX = None
valY = None
if path_to_valX is not None and path_to_valY is not None \
and os.path.exists(path_to_valX) and os.path.exists(path_to_valY) \
and os.path.isfile(path_to_valX) and os.path.isfile(path_to_valY):
with torch.no_grad():
valX, valY = torch.load(path_to_valX, map_location='cpu'), \
torch.load(path_to_valY, map_location='cpu')
'''
---------------------------loading dataset and normalizing---------------------------
'''
# Dataloader Parameters
train_params = {'batch_size': BATCHSIZE,
'shuffle': True,
'num_workers': NUMBER_OF_WORKERS}
test_params = {'batch_size': TEST_BATCHSIZE,
'shuffle': False,
'num_workers': NUMBER_OF_WORKERS}
# create a folder for the weights and custom logs
if not os.path.isdir(WEIGHT_DIR):
os.makedirs(WEIGHT_DIR)
if not os.path.isdir(CUSTOM_LOG_DIR):
os.makedirs(CUSTOM_LOG_DIR)
labelsNorm = None
# NORMLABEL
# normalizing on a trainingset wide mean and std
mean = None
std = None
if args.norm:
print('computing mean and std over trainingset')
# computes mean and std over all ground truths in dataset to tackle the problem of numerical insignificance
mean, std = computeMeanStdOverDataset('CONRADataset', DATA_FOLDER, train_params, device)
print('\niodine (mean/std): {}\t{}'.format(mean[0], std[0]))
print('water (mean/std): {}\t{}\n'.format(mean[1], std[1]))
labelsNorm = transforms.Normalize(mean=[0, 0], std=std)
m2, s2 = computeMeanStdOverDataset('CONRADataset', DATA_FOLDER, train_params, device, transform=labelsNorm)
print("new mean and std are:")
print('\nnew iodine (mean/std): {}\t{}'.format(m2[0], s2[0]))
print('new water (mean/std): {}\t{}\n'.format(m2[1], s2[1]))
traindata = CONRADataset(DATA_FOLDER,
True,
device=device,
precompute=True,
transform=labelsNorm)
testdata = None
if TESTSET_FOLDER is not None:
testdata = CONRADataset(TESTSET_FOLDER,
False,
device=device,
precompute=True,
transform=labelsNorm)
else:
testdata = CONRADataset(DATA_FOLDER,
False,
device=device,
precompute=True,
transform=labelsNorm)
trainingset = DataLoader(traindata, **train_params)
testset = DataLoader(testdata, **test_params)
'''
----------------loading model and checkpoints---------------------
'''
if args.model == "unet":
m = UNet(2, 2).to(device)
print("using the U-Net architecture with {} trainable params; Good Luck!".format(count_trainables(m)))
else:
m = simpleConvNet(2, 2).to(device)
o = optim.SGD(m.parameters(),
lr=LR,
momentum=MOM)
loss_fn = nn.MSELoss()
test_loss = None
train_loss = None
if len(os.listdir(WEIGHT_DIR)) != 0:
checkpoints = os.listdir(WEIGHT_DIR)
checkDir = {}
latestCheckpoint = 0
for i, checkpoint in enumerate(checkpoints):
stepOfCheckpoint = int(checkpoint.split(str(args.model) + str(args.name))[-1].split('.pt')[0])
checkDir[stepOfCheckpoint] = checkpoint
latestCheckpoint = max(latestCheckpoint, stepOfCheckpoint)
print("[{}] {}".format(stepOfCheckpoint, checkpoint))
# if on development machine, prompt for input, else just take the most recent one
if 'faui' in os.uname()[1]:
toUse = int(input("select checkpoint to use: "))
else:
toUse = latestCheckpoint
checkpoint = torch.load(os.path.join(WEIGHT_DIR, checkDir[toUse]))
m.load_state_dict(checkpoint['model_state_dict'])
m.to(device) # pushing weights to gpu
o.load_state_dict(checkpoint['optimizer_state_dict'])
train_loss = checkpoint['train_loss']
test_loss = checkpoint['test_loss']
START = checkpoint['epoch']
print("using checkpoint {}:\n\tloss(train/test): {}/{}".format(toUse, train_loss, test_loss))
else:
print("starting from scratch")
'''
-----------------------------training-----------------------------
'''
global_step = 0
# calculating initial loss
if test_loss is None or train_loss is None:
print("calculating initial loss")
m.eval()
print("testset...")
test_loss = calculate_loss(set=testset, loss_fn=loss_fn, length_set=len(testdata), dev=device, model=m)
print("trainset...")
train_loss = calculate_loss(set=trainingset, loss_fn=loss_fn, length_set=len(traindata), dev=device, model=m)
## SSIM and R value
R = []
SSIM = []
performanceFLE = os.path.join(CUSTOM_LOG_DIR, "performance.csv")
with open(performanceFLE, 'w+') as f:
f.write("step, SSIMiodine, SSIMwater, Riodine, Rwater, train_loss, test_loss\n")
print("computing ssim and r coefficents to: {}".format(performanceFLE))
# printing runtime information
print("starting training at {} for {} epochs {} iterations each\n\t{} total".format(START, EPOCHS, ITER, EPOCHS * ITER))
print("\tbatchsize: {}\n\tloss: {}\n\twill save results to \"{}\"".format(BATCHSIZE, train_loss, CHECKPOINT))
print("\tmodel: {}\n\tlearningrate: {}\n\tmomentum: {}\n\tnorming output space: {}".format(args.model, LR, MOM, args.norm))
#start actual training loops
for e in range(START, START + EPOCHS):
# iterations will not be interupted with validation and metrics
for i in range(ITER):
global_step = (e * ITER) + i
# training
m.train()
iteration_loss = 0
for x, y in tqdm(trainingset):
x, y = x.to(device=device, dtype=torch.float), y.to(device=device, dtype=torch.float)
pred = m(x)
loss = loss_fn(pred, y)
iteration_loss += loss.item()
o.zero_grad()
loss.backward()
o.step()
print("\niteration {}: --accumulated loss {}".format(global_step, iteration_loss))
# validation, saving and logging
print("\nvalidating")
m.eval() # disable dropout batchnorm etc
print("testset...")
test_loss = calculate_loss(set=testset, loss_fn=loss_fn, length_set=len(testdata), dev=device, model=m)
print("trainset...")
train_loss = calculate_loss(set=trainingset, loss_fn=loss_fn, length_set=len(traindata), dev=device, model=m)
print("calculating SSIM and R coefficients")
currSSIM, currR = performance(set=testset, dev=device, model=m, bs=TEST_BATCHSIZE)
print("SSIM (iod/water): {}/{}\nR (iod/water): {}/{}".format(currSSIM[0], currSSIM[1], currR[0], currR[1]))
with open(performanceFLE, 'a') as f:
newCSVline = "{}, {}, {}, {}, {}, {}, {}\n".format(global_step, currSSIM[0], currSSIM[1], currR[0],
currR[1], train_loss, test_loss)
f.write(newCSVline)
print("wrote new line to csv:\n\t{}".format(newCSVline))
'''
if valX and valY were set in preparations, use them to perform analytics.
if not, use the first sample from the testset to perform analytics
'''
with torch.no_grad():
truth, pred = None, None
IMAGE_LOG_DIR = os.path.join(CUSTOM_LOG_DIR, str(global_step))
if not os.path.isdir(IMAGE_LOG_DIR):
os.makedirs(IMAGE_LOG_DIR)
if valX is not None and valY is not None:
batched = np.zeros((BATCHSIZE, *valX.numpy().shape))
batched[0] = valX.numpy()
batched = torch.from_numpy(batched).to(device=device, dtype=torch.float)
pred = m(batched)
pred = pred.cpu().numpy()[0]
truth = valY.numpy() # still on cpu
assert pred.shape == truth.shape
else:
for x, y in testset:
# x, y in shape[2,2,480,620] [b,c,h,w]
x, y = x.to(device=device, dtype=torch.float), y.to(device=device, dtype=torch.float)
pred = m(x)
pred = pred.cpu().numpy()[0] # taking only the first sample of batch
truth = y.cpu().numpy()[0] # first projection for evaluation
advanvedMetrics(truth, pred, mean, std, global_step, args.norm, IMAGE_LOG_DIR)
print("logging")
CHECKPOINT = os.path.join(WEIGHT_DIR, str(args.model) + str(args.name) + str(global_step) + ".pt")
torch.save({
'epoch': e+1, # end of this epoch; so resume at next.
'model_state_dict': m.state_dict(),
'optimizer_state_dict': o.state_dict(),
'train_loss': train_loss,
'test_loss': test_loss},
CHECKPOINT)
print('\tsaved weigths to: ', CHECKPOINT)
if logger is not None and train_loss is not None:
logger.add_scalar('test_loss', test_loss, global_step=global_step)
logger.add_scalar('train_loss', train_loss, global_step=global_step)
logger.add_image("iodine-prediction", pred[0].reshape(1, 480, 620), global_step=global_step)
logger.add_image("water-prediction", pred[1].reshape(1, 480, 620), global_step=global_step)
# logger.add_image("water-prediction", wat)
print("\ttensorboard updated with test/train loss and a sample image")
elif train_loss is not None:
print("\tloss of global-step {}: {}".format(global_step, train_loss))
elif not useTensorboard:
print("\t(tb-logging disabled) test/train loss: {}/{} ".format(test_loss, train_loss))
else:
print("\tno loss accumulated yet")
# saving final results
print("saving upon exit")
torch.save({
'epoch': EPOCHS,
'model_state_dict': m.state_dict(),
'optimizer_state_dict': o.state_dict(),
'train_loss': train_loss,
'test_loss': test_loss},
CHECKPOINT)
print('\tsaved progress to: ', CHECKPOINT)
if logger is not None and train_loss is not None:
logger.add_scalar('test_loss', test_loss, global_step=global_step)
logger.add_scalar('train_loss', train_loss, global_step=global_step)
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='DeepMaterial model training')
parser.add_argument('--data', '-d', required=True,
help='folder containing test and training sets of MNIST')
parser.add_argument('--run', '-r', required=True,
help='target folder which will hold model weights and logs')
parser.add_argument('--valX', required=False, default=None,
help='path to a single .pt file to validate every epoch')
parser.add_argument('--valY', required=False, default=None,
help='path to a single .pt file to validate every epoch')
parser.add_argument('--testset', required=False, default=None,
help="path to dataset to use to evaluate as testset")
parser.add_argument('--model', '-m', default='unet',
help='model to use. options are: [<unet>], <conv>')
parser.add_argument('--name', default='checkpoint',
help='naming of checkpoint saved')
parser.add_argument('--norm', required=False, action='store_true', default=False,
help='choose to normalize or convert iodine images to um. <normalize>, <iod1000>, <subtractmean>')
parser.add_argument('--batch-size', type=int, default=2, metavar='N',
help='input batch size for training (default: 2)')
parser.add_argument('--test-batch-size', type=int, default=2, metavar='N',
help='input batch size for testing (default: 2)')
parser.add_argument('--workers', type=int, default=10, metavar='N',
help='parallel data loading processes (default: 5)')
parser.add_argument('--epochs', type=int, default=1, metavar='N',
help='number of epochs to train (default: 5)')
parser.add_argument('--iterations', type=int, default=1, metavar='N',
help='training cycles per epoch (before validation) (default: 1)')
parser.add_argument('--lr', type=float, default=1e-6, metavar='LR',
help='learning rate (default: 0.000001)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--tb', action='store_false', default=True,
help='enables/disables tensorboard logging')
args = parser.parse_args()
# handle tensorboard outside of train() to be able to stop the tensorboard process
TB_DIR = os.path.join(args.run, "tblog")
if not os.path.isdir(TB_DIR) and args.tb:
os.makedirs(TB_DIR)
# create tensorboard logger and start tensorboard
logger = None
if args.tb:
logger = SummaryWriter(log_dir=TB_DIR)
#tb = program.TensorBoard()
#tb.configure(argv=[None, '--logdir', TB_DIR])
#tb_url = tb.launch()
#print("tensorboard living on ", tb_url)
print("tensorboard logs are written to ", TB_DIR)
else:
print('tensorboard logging turned off')
try:
train(args)
if logger is not None:
logger.close()
except (KeyboardInterrupt, SystemExit):
print("exiting safely because of Keyboard Interrupt or SystemExit")
if logger is not None:
logger.close()