Maximizing Resolution with DADA2 and Long-read Amplicon Sequencing

0

Read Length (kb)

50

Image modified from: PacBio (pacb.com)

0

Read Length (kb)

50

Image modified from: PacBio (<u>pacb.com</u>)

Strategy: Build Consensus from Multiple Reads of a Long DNA Molecule

Image Credit: PacBio (pacb.com), Loop Genomics (loopgenomics.com)

PacBio HiFi Sequencing

(>99% accuracy)

Strategy: Build Consensus from Multiple Reads of a Long DNA Molecule

Image Credit: PacBio (pacb.com), Loop Genomics (loopgenomics.com)

Strategy: Build Consensus from Multiple Reads of a Long DNA Molecule

PacBio HiFi Sequencing

(>99% accuracy)

Loop Genomics Synthetic Long Reads (SLRs)

Distribute UMI throughout long DNA molecule

Short-read sequencing

Consensus assembly

Image Credit: PacBio (pacb.com), Loop Genomics (loopgenomics.com)

Read Length (kb)

Short Reads (Illumina)

Read length: ~250 nts

Per-base error-rate: **0.1 - 0.5%**

Long Reads (PacBio, Oxford)

Read length: 1 - 200 kilobases

Per-base error-rate: **2 - 10%**

HA Long Reads (HiFi, LoopSeq)

Read length: 1 - 20 kilobases Per-base error-rate: < 0.1%

50

Image modified from: PacBio (<u>pacb.com</u>)

N

Read Length (kb)

Highly-accurate long reads are effectively a new sequencing technology.

HA Long Reads (HiFi, LoopSeq)

Read length: 1 - 20 kilobases

Per-base error-rate: < 0.1%

50

Image modified from: PacBio (pacb.com)

Read Length (kb)

Highly-accurate long reads are effectively a new sequencing technology. **But do they really** work for amplicon sequencing?

HA Long Reads (HiFi, LoopSeq)

Read length: 1 - 20 kilobases

Per-base error-rate: < 0.1%

50

Image modified from: PacBio (<u>pacb.com</u>)

Zymo Mock Community

8 Bacterial Strains at nominally equal concentrations

- Pseudomonas aeruginosa •
- Escherichia coli •
- Salmonella enterica •
- Lactobacillus fermentum •
- Enterococcus faecalis •
- Staphylococcus aureus •
- Listeria monocytogenes •
- Bacillus subtilis •

Zymo Mock Community

8 Bacterial Strains at nominally equal concentrations

- Pseudomonas aeruginosa •
- Escherichia coli •
- Salmonella enterica •
- Lactobacillus fermentum •
- Enterococcus faecalis •
- Staphylococcus aureus •
- Listeria monocytogenes •
- Bacillus subtilis •

PacBio HiFi + DADA2

Zymo Mock Community

8 Bacterial Strains at nominally equal concentrations

- Pseudomonas aeruginosa
- Escherichia coli
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes
- Bacillus subtilis

Full–length 16S Sequence Variants

	_
-	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	

Zymo Mock Community

8 Bacterial Strains at nominally equal concentrations

- Pseudomonas aeruginosa •
- Escherichia coli •
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes •
- Bacillus subtilis

Full–length 16S Sequence Variants

	_
	_
	-
	_
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	

Zymo Mock Community

8 Bacterial Strains at nominally equal concentrations

- Pseudomonas aeruginosa •
- Escherichia coli
- Salmonella enterica
- Lactobacillus fermentum
- Enterococcus faecalis
- Staphylococcus aureus
- Listeria monocytogenes •
- Bacillus subtilis •

* Modestly modified workflow for long-read amplicon sequencing.

Full–length 16S Sequence Variants

	_
	_
	-
	_
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	
S	

Validating Highly-Accurate Long-Read Amplicon Seq

PacBio HiFi

High-throughput amplicon sequencing of the fulllength 16S rRNA gene with single-nucleotide resolution **a**

Benjamin J Callahan 🖾, Joan Wong, Cheryl Heiner, Steve Oh, Casey M Theriot, Ajay S Gulati, Sarah K McGill, Michael K Dougherty

Nucleic Acids Research, Volume 47, Issue 18, 10 October 2019, Page e103, https://doi.org/10.1093/nar/gkz569 Published: 03 July 2019 Article history **v**

LoopSeq

Ultra-accurate microbial amplicon sequencing with synthetic long reads

Benjamin J. Callahan , Dmitry Grinevich, Siddhartha Thakur, Michael A. Balamotis & Tuval Ben Yehezkel

Microbiome **9**, Article number: 130 (2021) Cite this article

5717 Accesses 11 Citations 44 Altmetric Metrics

Callahan et al, Nucleic Acids Research, 2019. Callahan et al, Microbiome, 2021.

Validating Highly-Accurate Long-Read Amplicon Seq

PacBio HiFi

High-throughput amplicon sequencing of the fulllength 16S rRNA gene with single-nucleotide resolution **a**

Benjamin J Callahan 🖾, Joan Wong, Cheryl Heiner, Steve Oh, Casey M Theriot, Ajay S Gulati, Sarah K McGill, Michael K Dougherty

Nucleic Acids Research, Volume 47, Issue 18, 10 October 2019, Page e103, https://doi.org/10.1093/nar/gkz569 Published: 03 July 2019 Article history -

Highly-accurate long reads are effectively a new sequencing technology. **But do they really** work for amplicon sequencing?

LoopSeq

Ultra-accurate microbial amplicon sequencing with synthetic long reads

Benjamin J. Callahan , Dmitry Grinevich, Siddhartha Thakur, Michael A. Balamotis & Tuval Ben Yehezkel

Microbiome **9**, Article number: 130 (2021) Cite this article 5717 Accesses | 11 Citations | 44 Altmetric | Metrics

Callahan et al, Nucleic Acids Research, 2019. Callahan et al, Microbiome, 2021.

Validating Highly-Accurate Long-Read Amplicon Seq

PacBio HiFi

High-throughput amplicon sequencing of the fulllength 16S rRNA gene with single-nucleotide resolution **a**

Benjamin J Callahan 🖾, Joan Wong, Cheryl Heiner, Steve Oh, Casey M Theriot, Ajay S Gulati, Sarah K McGill, Michael K Dougherty

Nucleic Acids Research, Volume 47, Issue 18, 10 October 2019, Page e103, https://doi.org/10.1093/nar/gkz569 Published: 03 July 2019 Article history •

Highly-accurate long reads are effectively a new sequencing technology. **But do they really** work for amplicon sequencing?

LoopSeq

Ultra-accurate microbial amplicon sequencing with synthetic long reads

Benjamin J. Callahan 🖂, Dmitry Grinevich, Siddhartha Thakur, Michael A. Balamotis & Tuval Ben Yehezkel

Microbiome **9**, Article number: 130 (2021) Cite this article 5717 Accesses 11 Citations 44 Altmetric Metrics

Yes! Multiple technologies Out to 6+ kilo bases >99.9% accuracy

Callahan et al, Nucleic Acids Research, 2019. Callahan et al, Microbiome, 2021.

Amplicon Sequencing. Exactly. Version 1.16

We support long-read amplicon sequencing!

We support long-read amplicon sequencing!

ASV Table or **Species Table (16S)**

Fastq

We support long-read amplicon sequencing!

Long-read specific documentation

PacBio HiFi: <u>https://github.com/benjjneb/LRASmanuscript</u>

LoopSeq: <u>https://github.com/benjjneb/LoopManuscript</u>

1.

Pseudo-Pooling

1.

Pseudo-Pooling

2. DETECT_SINGLETONS=TRUE

1.

Pseudo-Pooling

2. DETECT_SINGLETONS=TRUE

3. Long-read specific parameters.

Full-length 16S from Zymo mock community

Full–length 16S Sequence Variants

Full-length 16S from Zymo mock community

Full–length 16S Sequence Variants

Full-length 16S from human fecal samples

E. coli ASVs

Full-length 16S from human fecal samples

E. coli ASVs

Full-length 16S from retail meat samples

Full-length 16S from retail meat samples

Full genomic complement of 16S alleles

Callahan et al, Microbiome, 2021.

Limitations

•

- PCR Biases
- PCR Length Scaling (past ~5 kilo bases)
- Cost-per-base
- Chimeras
- Tooling (especially sub-species assignment)

Limitations

•

- PCR Biases
- PCR Length Scaling (past ~5 kilo bases)
- Cost-per-base
- Chimeras
- Tooling (especially sub-species assignment)

New Results

Serovar-level Identification of Bacterial Foodborne Pathogens From Fulllength 16S rRNA Gene Sequencing

Dmitry Grinevich, Lyndy Harden, Siddhartha Thakur, 🕩 Benjamin J Callahan **doi:** https://doi.org/10.1101/2023.06.28.546915

This article is a preprint and has not been certified by peer review [what does this mean?].

Dmitry Grinevich

Follow this preprint

Sid Thakur and lab

National Institute of Food and Agriculture

Acknowledgements

Bioinformatics

Susan Holmes Joey McMurdie Michael Rosen Dmitry Grinevich

Technology (PacBio)

Joan Wong Cheryl Heiner Steve Oh

Technology (Loop Genomics)

Tuval Ben Yehezkel Michael Balamotis

Applications Dmitry Grinevich Casey Theriot Siddhartha Thakur

www.callahanlab.org

NC STATE Veterinary Medicine