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| A Microbial Census

Marker-gene or Metagenomics Sequencing (MGS)
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Contaminants — DNA sequences from organisms not
truly present in the sample.
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Figure: Salter, et al. BMC Biology, 2014.
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The Placenta Harbors a Unique Microbiome

KJERSTI AAGAARD , JUN MA, KATHLEEN M. ANTONY, RADHIKA GANU, JOSEPH PETROSINO, AND JAMES VERSALOVIC Authors Info & Affiliations
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Bacteria in Healthy Placentas

Contrary to the prevailing idea of a “sterile” intrauterine environment, Aagaard
and coauthors demonstrated the consistent presence of a microbiome in placentas
from healthy pregnancies. This microbiome was consistently different from those
reported in other parts of the body, including the skin and urogenital tract. The
placental microbiome was most similar to that of the oral cavity, but the clinical
implications of this finding remain to be explored. In addition, the authors identi-
fied associations between the composition of the placental microbiome and a his-
tory of remote antenatal infection, as well as preterm birth, raising the possibility
that the placental microbiome may play a role in these events.
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Article | Published: 31 July 2019

Human placenta has no microbiome but can contain
potential pathogens

Marcus C. de Goffau, Susanne Lager, Ulla Sovio, Francesca Gaccioli, Emma Cook, Sharon J.

Peacock, Julian Parkhill &4, D. Stephen Charnock-Jones & Gordon C. S. Smith
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De-Discovery of the Placenta Microbiome

Frederic D. Bushman, PhD

Lack of detection of a human placenta microbiome in
samples from preterm and term deliveries
Jacob S. Leiby, Kevin McCormick, Scott Sherrill-Mix, Erik L. Clarke, Lyanna R. Kessler, Louis J.

Taylor, Casey E. Hofstaedter, Aoife M. Roche, Lisa M. Mattei, Kyle Bittinger, Michal A. Elovitz, Rita
Leite, Samuel Parry & & Frederic D. Bushman

Microbiome 6, Article number: 196 (2018) | Cite this article
8898 Accesses | 143 Citations | 110 Altmetric | Metrics
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Numerous uncharacterized and highly divergent
microbes which colonize humans are revealed

by circulating cell-free DNA

Mark Kowarsky?, Joan Camunas-Soler®, Michael Kertesz®™', Iwijn De Vlaminck®, Winston Koh®, Wenying Pan®,
Lance Martin®, Norma F. Neff><, Jennifer Okamoto™<, Ronald J. Wong®, Sandhya Kharbanda®, Yasser El-Sayed',
Yair Blumenfeld', David K. Stevenson?, Gary M. Shaw?, Nathan D. Wolfe%", and Stephen R. Quake®<2

2Department of Physics, Stanford University, Stanford, CA 94305; "Department of Bioengineering, Stanford University, Stanford, CA 94305; ‘Chan
Zuckerberg Biohub, San Francisco, CA 94158; “Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305;
Pediatric Stem Cell Transplantation, Lucille Packard Children’s Hospital, Stanford University, Stanford, CA 94305; Division of Maternal-Fetal Medicine,
Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; “Metabiota, San Francisco, CA
94104; "Global Viral, San Francisco, CA 94104; and 'Department of Applied Physics, Stanford University, Stanford, CA 94305

Contributed by Stephen R. Quake, July 12, 2017 (sent for review April 28, 2017; reviewed by Sgren Brunak and Eran Segal)

Blood circulates throughout the human body and contains mole-
cules drawn from virtually every tissue, including the microbes and
viruses which colonize the body. Through massive shotgun sequenc-
ing of circulating cell-free DNA from the blood, we identified
hundreds of new bacteria and viruses which represent previously
unidentified members of the human microbiome. Analyzing cumula-
tive sequence data from 1,351 blood samples collected from 188 pa-
tients enabled us to assemble 7,190 contiguous regions (contigs)
larger than 1 kbp, of which 3,761 are novel with little or no sequence
homology in any existing databases. The vast majority of these novel
contigs possess coding sequences, and we have validated their
existence both by finding their presence in independent experiments
and by performing direct PCR amplification. When their nearest
neighbors are located in the tree of life, many of the organisms
represent entirely novel taxa, showing that microbial diversity within
the human body is substantially broader than previously appreciated.

cell-free DNA | microbiome | metagenomics | biological dark matter

the body (18, 19); combining this observation with the average
genome sizes of a human, bacterium, and virus (Gb, Mb, and
kb, respectively) suggests that approximately 1% of DNA by
mass in a human is derived from nonhost origins. Previous
studies by us and others have shown that indeed approximately
1% of cfDNA sequences appear to be of nonhuman origin, but
only a small fraction of these map to existing databases of mi-
crobial and viral genomes (16). This suggests that there is a vast
diversity of as yet uncharacterized microbial diversity within
the human microbiome and that this diversity can be analyzed
through “unmappable” sequencing reads.

We analyzed the cfDNA-derived microbiomes of 1,351 samples
from 188 patients in four longitudinally sampled cohorts—heart
transplant (HT), 610 samples (76 patients); lung transplant
(LT), 460 samples (59 patients); bone marrow transplant
(BMT), 161 samples (21 patients); and pregnancy (PR), 120 samples
(32 patients)—and discovered that the majority of assembled

[ I
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Numerous uncharacterized and highly divergent
mlcrobes WhICh colonize humans are revealed
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Twitter is bad. I mostly follow scientists, and often end up running into interesting findings from other groups
that make me want to take a quick look at their data. Although most of our procrastinations don’t end up on the
blog, sometimes they do: 1, 2, 3. Well, today was one of those days.
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Now what?
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T=S +C, where C is constant

hence

fc = C/(S+C) ~1/T, where C << S

Davis, et al. Microbiome, 2018.
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T=S +C, where C is constant

hence

fc = C/(S+C) ~1/T, where C << S

Sample Sequence
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Frequency (log)

Total DNA Concentration (log)

Davis, et al. Microbiome, 2018.
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Input: DNA concentrations,

—eature table w/ abundances.

Qutput: Score O (contaminant) - 1 (non-contaminant),
Binary classification based on threshold.
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Frequency

Input: DNA concentrations,

—eature table w/ abundances.

Qutput: Score O (contaminant) - 1 (non-contaminant),
Binary classification based on threshold.

contam <- 1sContamilinant (segtab, 1s.neg
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Frequency

Input: DNA concentrations,

—eature table w/ abundances.

Qutput: Score O (contaminant) - 1 (non-contaminant),
Binary classification based on threshold.

Prevalence

Input: Categorization of samples as negative controls,
Feature table w/ abundances or presences.

OQutput: Score 0 (contaminant) - 1 (hon-contaminant)
Binary classification based on threshold.
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Needs range of DNA concentrations
Frequency

Input: DNA concentrations,

—eature table w/ abundances.

Qutput: Score O (contaminant) - 1 (non-contaminant),
Binary classification based on threshold.

Prevalence Needs multiple (6+) sequenced negative controls

Input: Categorization of samples as negative controls,
Feature table w/ abundances or presences.

OQutput: Score 0 (contaminant) - 1 (hon-contaminant)
Binary classification based on threshold.
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Oral Mucosal Dataset
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Oral Mucosal Dataset
ASVs Reads
— —
O ”,"
B 0.75 0.5 0.25 0
Specificity
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Davis, et al. Microbiome, 2018.



| Reducing Technical Variation |

Salmonella bongori: Ten-fold dilutions
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Salmonella bongori: Ten-fold dilutions
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Salmonella bongori: Ten-fold dilutions
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| Available now... R

Methodology | Open Access

Simple statistical identification and removal of
contaminant sequences in marker-gene and
metagenomics data

Nicole M. Davis, Diana M. Proctor, Susan P. Holmes, David A. Relman and Benjamin J. Callahan &4

Microbiome 2018 6:226

* Open-source
 Well documented
* R package

* 16S or shotgun

@bejcal -- https://github.com/benjjneb/decontam
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Frequency

Input: DNA concentrations,

—eature table w/ abundances.

Qutput: Score O (contaminant) - 1 (non-contaminant),
Binary classification based on threshold.

contam <- isContaminant (seqtab, conc, threshold)



| Decontam Method .

Frequency

Input: DNA concentrations,
Feature table w/ abundances.

Qutput: Score 0 (contaminant) - 1 (hon-contaminant),
Binary classification based on threshold.

contam <- isContaminant (seqgtab, conc, threshold)

ASV or OTU table
(or phyloseq ob

Vector of DNA concentrations

ject)

/

Number Oto 1
(default 0.5)

(or phyloseq variable name)
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Prevalence

Input: Categorization of samples as negative controls,
Feature table w/ abundances or presences.

Output: Score 0 (contaminant) - 1 (hon-contaminant)
Binary classitication based on threshold.
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Prevalence

Input: Categorization of samples as negative controls,
Feature table w/ abundances or presences.

Output: Score 0 (contaminant) - 1 (hon-contaminant)
Binary classitication based on threshold.

contam <- isContaminant (seqtab, neg, threshold)
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Prevalence

Input: Categorization of samples as negative controls,
Feature table w/ abundances or presences.

Output: Score 0 (contaminant) - 1 (hon-contaminant)
Binary classitication based on threshold.

contam <- isContaminant (seqtab, negqg, threshold)

ASV or OTU table
(or phyloseq ob

ject)

/

Number Oto 1
(default 0.5)

Vector: True if neg control, False otherwise
(or phyloseq variable name)
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Output

> class(contam)
## [1] "data.frame"

> head(contam)

## freq prev p.freq p.prev p contaminant
## Seql 0.323002694 549 1.000000e+00 NA 1.000000e+00 FALSE
## Seqg2 0.098667396 538 1.000000e+00 NA 1.000000e+00 FALSE
## Seq3 0.003551358 160 1.135975e-18 NA 1.135975e-18 TRUE
## Seq4 0.067588419 519 9.999998e-01 NA 9.999998e-01 FALSE
## Seqb5 0.045174743 354 1.000000e+00 NA 1.000000e+00 FALSE
## Seq6 0.040417101 538 1.000000e+00 NA 1.000000e+00 FALSE

Score: 0 to 1 /

(0: contaminant-like, Classitication: T/F
1. non-contaminant-like) (score < threshold)
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| Beyond defaults
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Default
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Better

Frequency Prevalence Combined
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| Recommendations... R

* There is no substitute for clean lab practices

e Sequence multiple full-process negative controls!

e Consider dilution series of a positive control

e Record DNA concentrations

* /n silico decontamination (at high resolution)

e Be skeptical of unexpected or implausible taxa

e Report taxa in negative controls
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Sequencing-based evidence of a microbiome
in locations previously thought “sterile” is not
conclusive on its own!
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Sequencing-based evidence of a microbiome
in locations previously thought “sterile” is not
conclusive on its own!

What additional evidence could make it convincing?
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De novo identification of microbial contaminantsin
low microbial biomass microbiomes with Squeegee  [=3\Vi170)al1al=a151 1 BN

Open Access

Yunxi Liu, R. A. Leo Elworth, Michael D. Jochum, Kjersti M. Aagaard & Todd J. Treangen & Dedicated to the study and use of environmental DNA for basic and applied sciences

Nature Communications 13, Article number: 6799 (2022) | Cite this article ORIGINALARTICLE (& OpenAccess © (® &

microDecon: A highly accurate read-subtraction tool for the
post-sequencing removal of contamination in metabarcoding
studies

Donald T. McKnight 524 Roger Huerlimann, Deborah S. Bower, Lin Schwarzkopf, Ross A. Alford,
Kyall R. Zenger

First published: 16 May 2019 | https://doi.org/10.1002/edn3.11 | Citations: 68
Article | Published: 16 March 2023

Contamination source modeling with SCRuB improves
cancer phenotype prediction from microbiome data

George |. Austin, Heekuk Park, Yoli Meydan, Dwayne Seeram, Tanya Sezin, Yue Clare Lou, Brian A.

Firek, Michael J. Morowitz, Jillian F. Banfield, Angela M. Christiano, Itsik Pe'er, Anne-Catrin

Uhlemann, Liat Shenhav & & Tal Korem

Nature Biotechnology (2023) | Cite this article
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What assumptions are these methods making?

What additional data do these methods require?
When is is appropriate to use these methods?
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