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microbes we have not
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Enzymatic Synthesis of Deoxyribonucleic Acid

VIII. FREQUENCIES OF NEAREST NEIGHBOR BASE SEQUENCES
IN DEOXYRIBONUCLEIC ACID

Joun Josse,* A. D. KAIsEr, ANpD ARTHUR KORNBERG

From the Department of Biochemistry, Stanford Unaversity School of Medicine, Palo Alto, California

(Received for publication, October 4, 1960)

Determination of deoxyribonucleotide sequence in a deoxyribo-
nucleic acid molecule is important from both the chemical and
genetic points of view. It is also essential for answering the
question of whether DNA synthesized in witro by polymerase
(1, 2) is a faithful copy of the nucleotide! sequence of the primer
DNA. Although enzymatically synthesized DNA has the same
over-all nucleotide composition as the particular primer DNA
(3), it could not be inferred that this synthesis is a replication of
the nucleotide sequences of the primer.

Because of the limitations of present methods, complete se-

oYY Y Y Y Fe D T D 0 I L T

(8). All of the labeled substrates contained P* in the phos-
phate esterified to the sugar; they were prepared as described
previously (1). The DNA-synthesizing enzyme was prepared
from the polymerase, Fraction VII, described elsewhere (1); this
enzyme was refractionated with dicthylaminoethyl cellulose,
yielding a preparation with a specific activity of 500 units per
mg of protein. Micrococcal DNase was prepared according to
Cunningham et al. (9); the final fraction had a specific activity
of 7500 units per mg of protein.? Calf spleen phosphodiesterase
was isolated by Hilmoe’s procedure (10); the purified preparation

P T



In the studies to be reported here, we have derived the fre-
quencies of the 16 possible nearest neighbor pairs in a variety
of DNA’s by the technique of enzymatic incorporation of 5’-P3-
labeled nucleotides into DNA and then degradation of the DNA
into 3’-nucleotides. Briefly, we have found that: (a) each DNA
directs the synthesis of a product which has a unique and non-
random pattern of the 16 nearest neighbor frequencies; (b) the
DNA synthesized has the same nearest neighbor frequencies
whether the primer i1s native DNA or enzymatically prepared
DNA containing only traces of the original native DNA; and
(c) the pattern of nearest neighbor frequencies in every case
involves both base-pairing of adenine to thymine and of guanine
to cytosine between sister strands of DNA, and opposite “polar-
ity”’ of the two strands as proposed in the Watson and Crick
model (7).
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Genes from Nine Genomes Are Separated into Their Organisms
in the Dinucleotide Composition Space

Hiroshi NAKASHIMA,!* Motonori OTA,? Ken NisHIKAWA,? and Tatsuo Oor®

School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa
920-0942, Japan,! Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima,
Shizuoka 411-8540, Japan,® and Kyoto Women’s University, Kitahiyoshi-cho 35, Higashiyama-ku, Kyoto
605, Japan®

(Received 2 September 1998)

Abstract

A set of 16 kinds of dinucleotide compositions was used to analyze the protein-encoding nucleotide
sequences in nine complete genomes: FEscherichia coli, Haemophilus influenzae, Helicobacter pylori, My-
coplasma genitalium, Mycoplasma pneumoniae, Synechocystis sp., Methanococcus jannaschii, Archaeoglobus
fulgidus, and Saccharomyces cerevisiae. The dinucleotide composition was significantly different between
the organisms. The distribution of genes from an organism was clustered around its center in the din-
ucleotide composition space. The genes from closely related organisms such as Gram-negative bacteria,
mycoplasma species and eukaryotes showed some overlap in the space. The genes from nine complete
genomes together with those from human were discriminated into respective clusters with 80% accuracy
using the dinucleotide composition alone. The composition data estimated from a whole genome was close
to that obtained from genes, indicating that the characteristic feature of dinucleotides holds not only for
protein coding regions but also noncoding regions. When a dendrogram was constructed from the dispo-
sition of the clusters in the dinucleotide space, it resembled the real phylogenetic tree. Thus, the distinct
feature observed in the dinucleotide composition may reflect the phylogenetic relationship of organisms.

Key words: separation of genes; dinucleotide frequency; phylogenetic tree
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Abstract

A set of 16 kinds of dinucleotide compositions was used to analyze the protein-encoding nucleotide
sequences in nine complete genomes: FEscherichia coli, Haemophilus influenzae, Helicobacter pylori, My-
coplasma genitalium, Mycoplasma pneumoniae, Synechocystis sp., Methanococcus jannaschii, Archaeoglobus
fulgidus, and Saccharomyces cerevisiae. The dinucleotide composition was significantly different between
the organisms. The distribution of genes from an organism was clustered around its center in the din-
ucleotide composition space. The genes from closely related organisms such as Gram-negative bacteria,
mycoplasma species and eukaryotes showed some overlap in the space. The genes from nine complete
genomes together with those from human were discriminated into respective clusters with 80% accuracy
using the dinucleotide composition alone. The composition data estimated from a whole genome was close
to that obtained from genes, indicating that the characteristic feature of dinucleotides holds not only for
protein coding regions but also noncoding regions. When a dendrogram was constructed from the dispo-
sition of the clusters in the dinucleotide space, it resembled the real phylogenetic tree. Thus, the distinct
feature observed in the dinucleotide composition may reflect the phylogenetic relationship of organisms.

Key words: separation of genes; dinucleotide frequency; phylogenetic tree
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A. fulgidus S. cerevisiae H. sapiens

Figure 1. Star-diagrams presenting the dinucleotide composition. The mean compositions (%) over all genes (shaded) and the entire
genome (non-shaded) are plotted. The data for human are exceptions (see Sequence data section), depicted here as references. The
radial axes of 16 dinucleotides are allotted so that the complementary dinucleotides, AA/TT, AC/GT, etc., occupy counter positions
along the circle. Complementary pairs should have equivalent amounts in the total composition over a genome. Note that the scale
is different for each diagram. The innermost broken circle indicates the 5% level.
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Tetranucleotide frequencies in microbial genomes

A computational strategy for determining the variability of long DNA
sequences in microbial genomes is described. Composite portraits of bacterial
genomes were obtained by computing tetranucleotide frequencies of sections
of genomic DNA, converting the frequencies to color images and arranging
the images according to their genetic position. The resulting images revealed
that the tetranucleotide frequencies of genomic DNA sequences are highly
conserved. Sections that were visibly different from those of the rest of the
genome contained ribosomal RNA, bacteriophage, or undefined coding
regions and had corresponding differences in the variances of tetranucleotide
frequencies and GC content. Comparison of nine completely sequenced bacte-
rial genomes showed that there was a nonlinear relationship between vari-
ances of the tetranucleotide frequencies and GC content, with the highest vari-
ances occurring in DNA sequences with low GC contents (less than 0.30 mol).
High variances were also observed in DNA sequences having high GC con-
tents (greater than 0.60 mol), but to a much lesser extent than DNA sequences
having low GC contents. Differences in the tetranucleotide frequencies may
be due to the mechanisms of intercellular genetic exchange and/or processes
involved in maintaining intracellular genetic stability. Identification of sections
that were different from those of the rest of the genome may provide informa-
tion on the evolution and plasticity of bacterial genomes.
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Figure 1. Fingerprints, variances of tetranucleotide frequencies, and GC valucs of sections of the Haemophilus influenzae Rd genome are conse-
cutively ordered from the No¢l restriction site [9]. Each column of the color image represents the fingerprint obtained from the analysis of one
DNA sequence (i.e., a 3000 bp section). Each row represents the frequency of a specific tetranucleotide and its complement. Tetranucleotides are
arranged alphabetically on the y-axis. Each tetranucleotide is represented by a box, whose color is determined by its frequency, ranging from
purple (low) to red (high). A star (*) identifies sections containing ribosomal RNA. The black bar identifies the location of the cryptic Mu-like
bacteriophage. The variance and GC values were computed from the analysis of one section.
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Minimum information about a single amplified genome
(MISAG) and a metagenome-assembled genome
(MIMAG) of bacteria and archaea
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Accurate and complete genomes from metagenomes

Lin-Xing Chen,' Karthik Anantharaman,’-” Alon Shaiber,%> A. Murat Eren,>*

and Jillian F. Banfield'~®

'Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA; “Graduate Program in
Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, USA; > Department of Medicine, University of Chicago, Chicago,
lllinois 60637, USA; *Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA; > Department of
Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA; °Earth and
Environmental Sciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA

Genomes are an integral component of the biological information about an organism; thus, the more complete the genome,
the more informative it is. Historically, bacterial and archaeal genomes were reconstructed from pure (monoclonal) cul-
tures, and the first reported sequences were manually curated to completion. However, the bottleneck imposed by the re-
quirement for isolates precluded genomic insights for the vast majority of microbial life. Shotgun sequencing of microbial
communities, referred to initially as community genomics and subsequently as genome-resolved metagenomics, can circum-
vent this limitation by obtaining metagenome-assembled genomes (MAGs); but gaps, local assembly errors, chimeras, and

contamination by fragments from other genomes limit the value of these genomes. Here, we discuss genome curation to
imnrave and. in come cacec. achieve comnlete (rcircnilarized. na can<cl MAGc (CMAG) Ta date. few CMAGc have heen
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