-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmo_nrutil.f90
1626 lines (1603 loc) · 46 KB
/
mo_nrutil.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
MODULE mo_nrutil
! This module provides common utilities for the numerical recipes f90 routines.
! WH Press, SA Teukolsky, WT Vetterling, BP Flannery,
! Numerical Recipes in Fortran 90 - The Art of Parallel Scientific Computing, 2nd Edition
! Volume 2 of Fortran Numerical Recipes, Cambridge University Press, UK, 1996
! Written Numerical Recipes, 1996
! Modified Matthias Cuntz, Nov 2011 - adapted to JAMS Fortran structure
! - added some double precision and 2d array routines
! License
! -------
! This file is part of the JAMS Fortran package, distributed under the MIT License.
!
! Copyright (c) 1996-2011 Numerical Recipes, Matthias Cuntz - mc (at) macu (dot) de
!
! Permission is hereby granted, free of charge, to any person obtaining a copy
! of this software and associated documentation files (the "Software"), to deal
! in the Software without restriction, including without limitation the rights
! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
! copies of the Software, and to permit persons to whom the Software is
! furnished to do so, subject to the following conditions:
!
! The above copyright notice and this permission notice shall be included in all
! copies or substantial portions of the Software.
!
! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
! SOFTWARE.
! Note on Numerical Recipes License
! ---------------------------------
! Be aware that some code is under the Numerical Recipes License 3rd
! edition <http://www.nr.com/aboutNR3license.html>
! The Numerical Recipes Personal Single-User License lets you personally
! use Numerical Recipes code ("the code") on any number of computers,
! but only one computer at a time. You are not permitted to allow anyone
! else to access or use the code. You may, under this license, transfer
! precompiled, executable applications incorporating the code to other,
! unlicensed, persons, providing that (i) the application is
! noncommercial (i.e., does not involve the selling or licensing of the
! application for a fee), and (ii) the application was first developed,
! compiled, and successfully run by you, and (iii) the code is bound
! into the application in such a manner that it cannot be accessed as
! individual routines and cannot practicably be unbound and used in
! other programs. That is, under this license, your application user
! must not be able to use Numerical Recipes code as part of a program
! library or "mix and match" workbench.
! Businesses and organizations that purchase the disk or code download,
! and that thus acquire one or more Numerical Recipes Personal
! Single-User Licenses, may permanently assign those licenses, in the
! number acquired, to individual employees. Such an assignment must be
! made before the code is first used and, once made, it is irrevocable
! and can not be transferred.
! If you do not hold a Numerical Recipes License, this code is only for
! informational and educational purposes but cannot be used.
USE mo_kind
IMPLICIT NONE
INTEGER(I4), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
INTEGER(I4), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4), PARAMETER :: NPAR_POLY=8
INTEGER(I4), PARAMETER :: NPAR_POLYTERM=8
! -------------------------------------------------------------
! interfaces sorted alphabetically
! -------------------------------------------------------------
INTERFACE array_copy
MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE array_copy
INTERFACE arth
MODULE PROCEDURE arth_r, arth_d, arth_i
END INTERFACE arth
INTERFACE assert
MODULE PROCEDURE assert1,assert2,assert3,assert4,assert_v
END INTERFACE assert
INTERFACE assert_eq
MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE assert_eq
INTERFACE cumsum
MODULE PROCEDURE cumsum_r,cumsum_i
END INTERFACE cumsum
INTERFACE diagadd
MODULE PROCEDURE diagadd_rvsp,diagadd_rsp,diagadd_rvdp,diagadd_rdp
END INTERFACE diagadd
INTERFACE diagmult
MODULE PROCEDURE diagmult_rvsp,diagmult_rsp, diagmult_rvdp,diagmult_rdp
END INTERFACE diagmult
INTERFACE geop
MODULE PROCEDURE geop_r, geop_d, geop_i, geop_c, geop_dv
END INTERFACE geop
INTERFACE get_diag
MODULE PROCEDURE get_diag_rv, get_diag_dv
END INTERFACE get_diag
INTERFACE imaxloc
MODULE PROCEDURE imaxloc_r,imaxloc_i
END INTERFACE imaxloc
INTERFACE iminloc
MODULE PROCEDURE iminloc_s,iminloc_d
END INTERFACE iminloc
INTERFACE outerdiff
MODULE PROCEDURE outerdiff_r,outerdiff_d,outerdiff_i
END INTERFACE outerdiff
INTERFACE outerprod
MODULE PROCEDURE outerprod_r,outerprod_d
END INTERFACE outerprod
INTERFACE poly
MODULE PROCEDURE poly_rr,poly_rrv,poly_dd,poly_ddv,&
poly_rc,poly_ddc,poly_cc,poly_dcdc,poly_msk_rrv,poly_msk_ddv
END INTERFACE poly
INTERFACE poly_term
MODULE PROCEDURE poly_term_rr, poly_term_dd, poly_term_cc, poly_term_dcdc
END INTERFACE poly_term
INTERFACE put_diag
MODULE PROCEDURE put_diag_rv, put_diag_r
END INTERFACE put_diag
INTERFACE reallocate
MODULE PROCEDURE reallocate_rv,reallocate_rm,&
reallocate_iv,reallocate_im,reallocate_hv, &
reallocate_dv, reallocate_dm
END INTERFACE reallocate
INTERFACE scatter_add
MODULE PROCEDURE scatter_add_r,scatter_add_d
END INTERFACE scatter_add
INTERFACE scatter_max
MODULE PROCEDURE scatter_max_r,scatter_max_d
END INTERFACE scatter_max
INTERFACE swap
MODULE PROCEDURE swap_i, swap_r, swap_d, swap_c, swap_z, &
swap_iv, swap_rv, swap_dv, swap_cv, swap_zv, &
swap_im, swap_rm, swap_dm, swap_cm, swap_zm, &
masked_swap_is, masked_swap_iv, masked_swap_im, &
masked_swap_rs, masked_swap_rv, masked_swap_rm, &
masked_swap_ds, masked_swap_dv, masked_swap_dm, &
masked_swap_cs, masked_swap_cv, masked_swap_cm, &
masked_swap_zs, masked_swap_zv, masked_swap_zm
END INTERFACE swap
INTERFACE unit_matrix
MODULE PROCEDURE unit_matrix_sp, unit_matrix_dp
END INTERFACE unit_matrix
INTERFACE vabs
MODULE PROCEDURE vabs_sp, vabs_dp
END INTERFACE vabs
CONTAINS
!BL
SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_r
!BL
SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_d
!BL
SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_i
!BL
!BL
SUBROUTINE swap_i(a,b)
INTEGER(I4), INTENT(INOUT) :: a,b
INTEGER(I4) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_i
!BL
SUBROUTINE swap_r(a,b)
REAL(SP), INTENT(INOUT) :: a,b
REAL(SP) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_r
!MC
SUBROUTINE swap_d(a,b)
REAL(DP), INTENT(INOUT) :: a,b
REAL(DP) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_d
!BL
SUBROUTINE swap_c(a,b)
COMPLEX(SPC), INTENT(INOUT) :: a,b
COMPLEX(SPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_c
!BL
SUBROUTINE swap_z(a,b)
COMPLEX(DPC), INTENT(INOUT) :: a,b
COMPLEX(DPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_z
!MC
SUBROUTINE swap_iv(a,b)
INTEGER(I4), DIMENSION(:), INTENT(INOUT) :: a,b
INTEGER(I4), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_iv
!BL
SUBROUTINE swap_rv(a,b)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_rv
!MC
SUBROUTINE swap_dv(a,b)
REAL(DP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(DP), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_dv
!BL
SUBROUTINE swap_cv(a,b)
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cv
!BL
SUBROUTINE swap_zv(a,b)
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_zv
!MC
SUBROUTINE swap_im(a,b)
INTEGER(I4), DIMENSION(:,:), INTENT(INOUT) :: a,b
INTEGER(I4), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_im
!MC
SUBROUTINE swap_rm(a,b)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_rm
!MC
SUBROUTINE swap_dm(a,b)
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: a,b
REAL(DP), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_dm
!BL
SUBROUTINE swap_cm(a,b)
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cm
!BL
SUBROUTINE swap_zm(a,b)
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_zm
!MC
SUBROUTINE masked_swap_is(a,b,mask)
INTEGER(I4), INTENT(INOUT) :: a,b
LOGICAL, INTENT(IN) :: mask
INTEGER(I4) :: swp
if (mask) then
swp=a
a=b
b=swp
end if
END SUBROUTINE masked_swap_is
!MC
SUBROUTINE masked_swap_iv(a,b,mask)
INTEGER(I4), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:), INTENT(IN) :: mask
INTEGER(I4), DIMENSION(size(a)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_iv
!MC
SUBROUTINE masked_swap_im(a,b,mask)
INTEGER(I4), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:,:), INTENT(IN) :: mask
INTEGER(I4), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_im
!BL
SUBROUTINE masked_swap_rs(a,b,mask)
REAL(SP), INTENT(INOUT) :: a,b
LOGICAL, INTENT(IN) :: mask
REAL(SP) :: swp
if (mask) then
swp=a
a=b
b=swp
end if
END SUBROUTINE masked_swap_rs
!BL
SUBROUTINE masked_swap_rv(a,b,mask)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_rv
!BL
SUBROUTINE masked_swap_rm(a,b,mask)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:,:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_rm
!MC
SUBROUTINE masked_swap_ds(a,b,mask)
REAL(DP), INTENT(INOUT) :: a,b
LOGICAL, INTENT(IN) :: mask
REAL(DP) :: swp
if (mask) then
swp=a
a=b
b=swp
end if
END SUBROUTINE masked_swap_ds
!MC
SUBROUTINE masked_swap_dv(a,b,mask)
REAL(DP), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:), INTENT(IN) :: mask
REAL(DP), DIMENSION(size(a)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_dv
!MC
SUBROUTINE masked_swap_dm(a,b,mask)
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:,:), INTENT(IN) :: mask
REAL(DP), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_dm
!MC
SUBROUTINE masked_swap_cs(a,b,mask)
COMPLEX(SPC), INTENT(INOUT) :: a,b
LOGICAL, INTENT(IN) :: mask
COMPLEX(SPC) :: swp
if (mask) then
swp=a
a=b
b=swp
end if
END SUBROUTINE masked_swap_cs
!MC
SUBROUTINE masked_swap_cv(a,b,mask)
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:), INTENT(IN) :: mask
COMPLEX(SPC), DIMENSION(size(a)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_cv
!MC
SUBROUTINE masked_swap_cm(a,b,mask)
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:,:), INTENT(IN) :: mask
COMPLEX(SPC), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_cm
!MC
SUBROUTINE masked_swap_zs(a,b,mask)
COMPLEX(DPC), INTENT(INOUT) :: a,b
LOGICAL, INTENT(IN) :: mask
COMPLEX(DPC) :: swp
if (mask) then
swp=a
a=b
b=swp
end if
END SUBROUTINE masked_swap_zs
!MC
SUBROUTINE masked_swap_zv(a,b,mask)
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:), INTENT(IN) :: mask
COMPLEX(DPC), DIMENSION(size(a)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_zv
!MC
SUBROUTINE masked_swap_zm(a,b,mask)
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL, DIMENSION(:,:), INTENT(IN) :: mask
COMPLEX(DPC), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)
swp=a
a=b
b=swp
end where
END SUBROUTINE masked_swap_zm
!BL
!BL
!GD
FUNCTION reallocate_dv(p,n)
REAL(DP), DIMENSION(:), POINTER :: p, reallocate_dv
INTEGER(I4), INTENT(IN) :: n
INTEGER(I4) :: nold,ierr
allocate(reallocate_dv(n),stat=ierr)
if (ierr /= 0) call &
nrerror('reallocate_dv: problem in attempt to allocate memory')
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_dv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_dv
!GD
FUNCTION reallocate_dm(p,n,m)
REAL(DP), DIMENSION(:,:), POINTER :: p, reallocate_dm
INTEGER(I4), INTENT(IN) :: n,m
INTEGER(I4) :: nold,mold,ierr
allocate(reallocate_dm(n,m),stat=ierr)
if (ierr /= 0) call &
nrerror('reallocate_dm: problem in attempt to allocate memory')
if (.not. associated(p)) RETURN
nold=size(p,1)
mold=size(p,2)
reallocate_dm(1:min(nold,n),1:min(mold,m))=&
p(1:min(nold,n),1:min(mold,m))
deallocate(p)
END FUNCTION reallocate_dm
!BL
FUNCTION reallocate_rv(p,n)
REAL(SP), DIMENSION(:), POINTER :: p, reallocate_rv
INTEGER(I4), INTENT(IN) :: n
INTEGER(I4) :: nold,ierr
allocate(reallocate_rv(n),stat=ierr)
if (ierr /= 0) call &
nrerror('reallocate_rv: problem in attempt to allocate memory')
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_rv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_rv
!BL
FUNCTION reallocate_iv(p,n)
INTEGER(I4), DIMENSION(:), POINTER :: p, reallocate_iv
INTEGER(I4), INTENT(IN) :: n
INTEGER(I4) :: nold,ierr
allocate(reallocate_iv(n),stat=ierr)
if (ierr /= 0) call &
nrerror('reallocate_iv: problem in attempt to allocate memory')
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_iv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_iv
!BL
FUNCTION reallocate_hv(p,n)
CHARACTER(1), DIMENSION(:), POINTER :: p, reallocate_hv
INTEGER(I4), INTENT(IN) :: n
INTEGER(I4) :: nold,ierr
allocate(reallocate_hv(n),stat=ierr)
if (ierr /= 0) call &
nrerror('reallocate_hv: problem in attempt to allocate memory')
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_hv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_hv
!BL
FUNCTION reallocate_rm(p,n,m)
REAL(SP), DIMENSION(:,:), POINTER :: p, reallocate_rm
INTEGER(I4), INTENT(IN) :: n,m
INTEGER(I4) :: nold,mold,ierr
allocate(reallocate_rm(n,m),stat=ierr)
if (ierr /= 0) call &
nrerror('reallocate_rm: problem in attempt to allocate memory')
if (.not. associated(p)) RETURN
nold=size(p,1)
mold=size(p,2)
reallocate_rm(1:min(nold,n),1:min(mold,m))=&
p(1:min(nold,n),1:min(mold,m))
deallocate(p)
END FUNCTION reallocate_rm
!BL
FUNCTION reallocate_im(p,n,m)
INTEGER(I4), DIMENSION(:,:), POINTER :: p, reallocate_im
INTEGER(I4), INTENT(IN) :: n,m
INTEGER(I4) :: nold,mold,ierr
allocate(reallocate_im(n,m),stat=ierr)
if (ierr /= 0) call &
nrerror('reallocate_im: problem in attempt to allocate memory')
if (.not. associated(p)) RETURN
nold=size(p,1)
mold=size(p,2)
reallocate_im(1:min(nold,n),1:min(mold,m))=&
p(1:min(nold,n),1:min(mold,m))
deallocate(p)
END FUNCTION reallocate_im
!BL
FUNCTION ifirstloc(mask)
LOGICAL, DIMENSION(:), INTENT(IN) :: mask
INTEGER(I4) :: ifirstloc
INTEGER(I4), DIMENSION(1) :: loc
loc=maxloc(merge(1,0,mask))
ifirstloc=loc(1)
if (.not. mask(ifirstloc)) ifirstloc=size(mask)+1
END FUNCTION ifirstloc
!BL
FUNCTION imaxloc_r(arr)
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4) :: imaxloc_r
INTEGER(I4), DIMENSION(1) :: imax
imax=maxloc(arr(:))
imaxloc_r=imax(1)
END FUNCTION imaxloc_r
!BL
FUNCTION imaxloc_i(iarr)
INTEGER(I4), DIMENSION(:), INTENT(IN) :: iarr
INTEGER(I4), DIMENSION(1) :: imax
INTEGER(I4) :: imaxloc_i
imax=maxloc(iarr(:))
imaxloc_i=imax(1)
END FUNCTION imaxloc_i
!BL
FUNCTION iminloc_s(arr)
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4), DIMENSION(1) :: imin
INTEGER(I4) :: iminloc_s
imin=minloc(arr(:))
iminloc_s=imin(1)
END FUNCTION iminloc_s
!JM
FUNCTION iminloc_d(arr)
REAL(DP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4), DIMENSION(1) :: imin
INTEGER(I4) :: iminloc_d
imin=minloc(arr(:))
iminloc_d=imin(1)
END FUNCTION iminloc_d
!BL
SUBROUTINE assert1(n1,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1
if (.not. n1) then
write (*,*) 'nrerror: an assertion failed with this tag:', &
string
STOP 'program terminated by assert1'
end if
END SUBROUTINE assert1
!BL
SUBROUTINE assert2(n1,n2,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2
if (.not. (n1 .and. n2)) then
write (*,*) 'nrerror: an assertion failed with this tag:', &
string
STOP 'program terminated by assert2'
end if
END SUBROUTINE assert2
!BL
SUBROUTINE assert3(n1,n2,n3,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3
if (.not. (n1 .and. n2 .and. n3)) then
write (*,*) 'nrerror: an assertion failed with this tag:', &
string
STOP 'program terminated by assert3'
end if
END SUBROUTINE assert3
!BL
SUBROUTINE assert4(n1,n2,n3,n4,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3,n4
if (.not. (n1 .and. n2 .and. n3 .and. n4)) then
write (*,*) 'nrerror: an assertion failed with this tag:', &
string
STOP 'program terminated by assert4'
end if
END SUBROUTINE assert4
!BL
SUBROUTINE assert_v(n,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, DIMENSION(:), INTENT(IN) :: n
if (.not. all(n)) then
write (*,*) 'nrerror: an assertion failed with this tag:', &
string
STOP 'program terminated by assert_v'
end if
END SUBROUTINE assert_v
!BL
FUNCTION assert_eq2(n1,n2,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2
INTEGER :: assert_eq2
if (n1 == n2) then
assert_eq2=n1
else
write (*,*) 'nrerror: an assert_eq failed with this tag:', &
string
STOP 'program terminated by assert_eq2'
end if
END FUNCTION assert_eq2
!BL
FUNCTION assert_eq3(n1,n2,n3,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3
INTEGER :: assert_eq3
if (n1 == n2 .and. n2 == n3) then
assert_eq3=n1
else
write (*,*) 'nrerror: an assert_eq failed with this tag:', &
string
STOP 'program terminated by assert_eq3'
end if
END FUNCTION assert_eq3
!BL
FUNCTION assert_eq4(n1,n2,n3,n4,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3,n4
INTEGER :: assert_eq4
if (n1 == n2 .and. n2 == n3 .and. n3 == n4) then
assert_eq4=n1
else
write (*,*) 'nrerror: an assert_eq failed with this tag:', &
string
STOP 'program terminated by assert_eq4'
end if
END FUNCTION assert_eq4
!BL
FUNCTION assert_eqn(nn,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, DIMENSION(:), INTENT(IN) :: nn
INTEGER :: assert_eqn
if (all(nn(2:) == nn(1))) then
assert_eqn=nn(1)
else
write (*,*) 'nrerror: an assert_eq failed with this tag:', &
string
STOP 'program terminated by assert_eqn'
end if
END FUNCTION assert_eqn
!BL
SUBROUTINE nrerror(string)
CHARACTER(LEN=*), INTENT(IN) :: string
write (*,*) 'nrerror: ',string
STOP 'program terminated by nrerror'
END SUBROUTINE nrerror
!BL
FUNCTION arth_r(first,increment,n)
REAL(SP), INTENT(IN) :: first,increment
INTEGER(I4), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: arth_r
INTEGER(I4) :: k,k2
REAL(SP) :: temp
if (n > 0) arth_r(1)=first
if (n <= NPAR_ARTH) then
do k=2,n
arth_r(k)=arth_r(k-1)+increment
end do
else
do k=2,NPAR2_ARTH
arth_r(k)=arth_r(k-1)+increment
end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do
if (k >= n) exit
k2=k+k
arth_r(k+1:min(k2,n))=temp+arth_r(1:min(k,n-k))
temp=temp+temp
k=k2
end do
end if
END FUNCTION arth_r
!BL
FUNCTION arth_d(first,increment,n)
REAL(DP), INTENT(IN) :: first,increment
INTEGER(I4), INTENT(IN) :: n
REAL(DP), DIMENSION(n) :: arth_d
INTEGER(I4) :: k,k2
REAL(DP) :: temp
if (n > 0) arth_d(1)=first
if (n <= NPAR_ARTH) then
do k=2,n
arth_d(k)=arth_d(k-1)+increment
end do
else
do k=2,NPAR2_ARTH
arth_d(k)=arth_d(k-1)+increment
end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do
if (k >= n) exit
k2=k+k
arth_d(k+1:min(k2,n))=temp+arth_d(1:min(k,n-k))
temp=temp+temp
k=k2
end do
end if
END FUNCTION arth_d
!BL
FUNCTION arth_i(first,increment,n)
INTEGER(I4), INTENT(IN) :: first,increment,n
INTEGER(I4), DIMENSION(n) :: arth_i
INTEGER(I4) :: k,k2,temp
if (n > 0) arth_i(1)=first
if (n <= NPAR_ARTH) then
do k=2,n
arth_i(k)=arth_i(k-1)+increment
end do
else
do k=2,NPAR2_ARTH
arth_i(k)=arth_i(k-1)+increment
end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do
if (k >= n) exit
k2=k+k
arth_i(k+1:min(k2,n))=temp+arth_i(1:min(k,n-k))
temp=temp+temp
k=k2
end do
end if
END FUNCTION arth_i
!BL
!BL
FUNCTION geop_r(first,factor,n)
REAL(SP), INTENT(IN) :: first,factor
INTEGER(I4), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: geop_r
INTEGER(I4) :: k,k2
REAL(SP) :: temp
if (n > 0) geop_r(1)=first
if (n <= NPAR_GEOP) then
do k=2,n
geop_r(k)=geop_r(k-1)*factor
end do
else
do k=2,NPAR2_GEOP
geop_r(k)=geop_r(k-1)*factor
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
if (k >= n) exit
k2=k+k
geop_r(k+1:min(k2,n))=temp*geop_r(1:min(k,n-k))
temp=temp*temp
k=k2
end do
end if
END FUNCTION geop_r
!BL
FUNCTION geop_d(first,factor,n)
REAL(DP), INTENT(IN) :: first,factor
INTEGER(I4), INTENT(IN) :: n
REAL(DP), DIMENSION(n) :: geop_d
INTEGER(I4) :: k,k2
REAL(DP) :: temp
if (n > 0) geop_d(1)=first
if (n <= NPAR_GEOP) then
do k=2,n
geop_d(k)=geop_d(k-1)*factor
end do
else
do k=2,NPAR2_GEOP
geop_d(k)=geop_d(k-1)*factor
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
if (k >= n) exit
k2=k+k
geop_d(k+1:min(k2,n))=temp*geop_d(1:min(k,n-k))
temp=temp*temp
k=k2
end do
end if
END FUNCTION geop_d
!BL
FUNCTION geop_i(first,factor,n)
INTEGER(I4), INTENT(IN) :: first,factor,n
INTEGER(I4), DIMENSION(n) :: geop_i
INTEGER(I4) :: k,k2,temp
if (n > 0) geop_i(1)=first
if (n <= NPAR_GEOP) then
do k=2,n
geop_i(k)=geop_i(k-1)*factor
end do
else
do k=2,NPAR2_GEOP
geop_i(k)=geop_i(k-1)*factor
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
if (k >= n) exit
k2=k+k
geop_i(k+1:min(k2,n))=temp*geop_i(1:min(k,n-k))
temp=temp*temp
k=k2
end do
end if
END FUNCTION geop_i
!BL
FUNCTION geop_c(first,factor,n)
COMPLEX(SP), INTENT(IN) :: first,factor
INTEGER(I4), INTENT(IN) :: n
COMPLEX(SP), DIMENSION(n) :: geop_c
INTEGER(I4) :: k,k2
COMPLEX(SP) :: temp
if (n > 0) geop_c(1)=first
if (n <= NPAR_GEOP) then
do k=2,n
geop_c(k)=geop_c(k-1)*factor
end do
else
do k=2,NPAR2_GEOP
geop_c(k)=geop_c(k-1)*factor
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
if (k >= n) exit
k2=k+k
geop_c(k+1:min(k2,n))=temp*geop_c(1:min(k,n-k))
temp=temp*temp
k=k2
end do
end if
END FUNCTION geop_c
!BL
FUNCTION geop_dv(first,factor,n)
REAL(DP), DIMENSION(:), INTENT(IN) :: first,factor
INTEGER(I4), INTENT(IN) :: n
REAL(DP), DIMENSION(size(first),n) :: geop_dv
INTEGER(I4) :: k,k2
REAL(DP), DIMENSION(size(first)) :: temp
if (n > 0) geop_dv(:,1)=first(:)
if (n <= NPAR_GEOP) then
do k=2,n
geop_dv(:,k)=geop_dv(:,k-1)*factor(:)
end do
else
do k=2,NPAR2_GEOP
geop_dv(:,k)=geop_dv(:,k-1)*factor(:)
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
if (k >= n) exit
k2=k+k
geop_dv(:,k+1:min(k2,n))=geop_dv(:,1:min(k,n-k))*&
spread(temp,2,size(geop_dv(:,1:min(k,n-k)),2))
temp=temp*temp
k=k2
end do
end if
END FUNCTION geop_dv
!BL
!BL
RECURSIVE FUNCTION cumsum_r(arr,seed) RESULT(ans)
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), OPTIONAL, INTENT(IN) :: seed
REAL(SP), DIMENSION(size(arr)) :: ans
INTEGER(I4) :: n,j
REAL(SP) :: sd
n=size(arr)
if (n == 0_i4) RETURN
sd=0.0_sp
if (present(seed)) sd=seed
ans(1)=arr(1)+sd
if (n < NPAR_CUMSUM) then
do j=2,n
ans(j)=ans(j-1)+arr(j)
end do
else
ans(2:n:2)=cumsum_r(arr(2:n:2)+arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)
end if
END FUNCTION cumsum_r
!BL
RECURSIVE FUNCTION cumsum_i(arr,seed) RESULT(ans)
INTEGER(I4), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4), OPTIONAL, INTENT(IN) :: seed
INTEGER(I4), DIMENSION(size(arr)) :: ans
INTEGER(I4) :: n,j,sd
n=size(arr)
if (n == 0_i4) RETURN
sd=0_i4
if (present(seed)) sd=seed
ans(1)=arr(1)+sd
if (n < NPAR_CUMSUM) then
do j=2,n
ans(j)=ans(j-1)+arr(j)
end do
else
ans(2:n:2)=cumsum_i(arr(2:n:2)+arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)
end if
END FUNCTION cumsum_i
!BL
!BL
RECURSIVE FUNCTION cumprod(arr,seed) RESULT(ans)
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), OPTIONAL, INTENT(IN) :: seed
REAL(SP), DIMENSION(size(arr)) :: ans
INTEGER(I4) :: n,j
REAL(SP) :: sd
n=size(arr)
if (n == 0_i4) RETURN
sd=1.0_sp
if (present(seed)) sd=seed
ans(1)=arr(1)*sd
if (n < NPAR_CUMPROD) then
do j=2,n