Skip to content

Latest commit

 

History

History
36 lines (30 loc) · 1.29 KB

File metadata and controls

36 lines (30 loc) · 1.29 KB

Command

Default

python3 main.py qconfig.yaml [path to imagenet dataset] -a [architecture of model] --pretrained

BN-Tuning

python3 main.py qconfig_bn_tuning.yaml [path to imagenet dataset] -a [architecture of model] --pretrained

How to get the dataset?

  • first: download ImageNet from https://image-net.org/download-images
  • second: run a script from https://github.com/pytorch/examples/blob/main/imagenet/extract_ILSVRC.sh

ImageNet Benchmark

  • Task: ImageNet
  • Eval data num: 50k
  • Calibration data num: 256
  • Weight bit: 8
  • Feature bit: 8
  • Weight observer: MinMax
  • Feature observers: As shown in following table
  • Backend: TensorRT (symmetric feature quantization)
Model Float MinMax MSE Percentile w/ alpha=1e-3 Moving average w/ ema_ratio=0.9 ACIQ KL histogram
ResNet18 69.76% 69.544% 69.59% 68.42% 69.558% 69.544% 69.354%
ResNet50 76.146% 75.888% 76.042% 75.34% 76.026% 76.014% 75.634%
MobileNetV2 70.49% 68.468% 69.498% 69.242% 69.708% 68.896% 68.578%
EfficientNet-Lite0 75.394% 75.116% 75.148% 74.862% 75.09% 75.116% 31.082%
RegNetX-600MF 75.034% 74.56% 74.776% 72.946% 74.692% 74.602% 74.458%

Release notes

  • 09/01/2022: Add a batchnorm tuning algorithm. paper